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Abstract. Hydropower is the green energy with the most significant comprehensive emission reduction ben-
efits in the whole life cycle. The signals of hydropower equipment include fault information, and it can assist
the fault diagnosis of hydropower units. However, most of the existing methods lack the quantitative evalu-
ation of the equipment degradation. A quantitative evaluation method of degradation for hydropower equip-
ment is proposed. Variable modal decomposition (VMD) is employed to obtain decomposed simple signal.
The singular values and sample entropy of the intrinsic mode functions are obtained and combined into a fea-
ture vector. Jenson-Shannon divergence is adopted to evaluate the degradation of hydropower equipment by
comparing the current feature vector with the normal state feature vector. Experimental results show that this
method can provide degradation evaluation information. The proposed method can provide not only quanti-
tative indicators of equipment degradation, but also early warning of equipment degradation than the usual
anomaly detection methods.
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1 Introduction

Hydropower is recognized as the green energy with the most significant comprehensive emission reduction
benefits in the whole life cycle. As a kind of new clean and renewable energy, it has become a hot topic in clean
energy research because of its significant comprehensive utilization benefits and many other advantages [1].
Compared with coal and other energy sources, the development of hydropower is conducive to environmental
protection and ecological construction, and it achieves the goal of all-round and high-quality development of
economic and social environment [2].

With the continuous expansion of hydropower energy development scale, the construction volume of hydro-
power stations is also increasing. As the core equipment of hydropower station to convert electric energy by us-
ing water flow drop, the working state of hydropower unit can directly affect the operation of hydropower station.
If the abnormal or faulty operation state of hydropower unit itself occurs, it will endanger the safety and stability
of hydropower unit and hydropower station’s operation. In the actual operation process of hydropower stations,
problems and incidents of hydropower mechanical equipment operation failures caused by mechanical equip-
ment aging, external influences and human factors also occur from time to time, which makes people realize the
importance of timely maintenance of hydropower units [3]. Therefore, it is important to monitor the operational
status of hydropower units in real time and to find out abnormal situations and timely maintain them, as this can
ensure the normal operation of hydropower units and hydropower stations.

There are two maintenance modes for large-scale mechanical equipment: maintenance of damaged equip-
ment after an accident and maintenance of mechanical equipment according to a scheduled maintenance plan.
However, these two kinds of troubleshooting methods have their own shortcomings. After the accident, the trou-
bleshooting is to make an after-the-fact troubleshooting and emergency repair of the mechanical components that
have already failed, but the accident has occurrence for a long time, and there is no way to remedy the possible
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device injury and economic loss. Overhauling the mechanical equipment according to the scheduled overhaul
plan may lead to over-overhaul of some components that do not need to be overhauled, resulting in waste of
manpower and financial resources, or failure to overhaul the faulty equipment. This can also result in emergency
repair after unit failure that aggravated the production cost. To meet the current situation of increasing emphasis
on production safety and the pursuit of benefits, it is necessary to improve the previous maintenance methods.
When the real-time running states of hydropower units are monitored, and the running state information is col-
lected and analysed, the running state and the fault diagnosis of the units according to the processing results can
be judged to plan maintenance in time. These developing techniques can ensure the long-term stable operation
of mechanical components. The stable operation of hydropower units is the guarantee for hydropower stations to
achieve their optimal power generation capacities. It has important application value to take effective fault diag-
nosis methods to analyse the operational status of hydropower units and arrange maintenance in time to ensure
the safe operation of their mechanical components and prevent accidents.

The researches and developments of working condition detection and fault diagnosis technology of hydro-
power units are relatively early, and many research results have been obtained [4-8]. These studies focus on fault
diagnosis, anomaly detection, and trend prediction of hydropower equipment based on machine learning. In re-
cent years, deep learning techniques have not only achieved success in areas such as images and vision, but also
in the monitoring and prediction of hydropower equipment [9-15]. Time-frequency analysis method is widely
used in fault diagnosis and anomaly detection for hydropower equipment. As more and more hydropower equip-
ment signals are used for monitoring, adaptive decomposition algorithms are beginning to be adopted due to their
excellent processing capabilities for nonlinear and nonstationary signals. Among these adaptive decomposition
methods, empirical mode decomposition (EMD) and empirical wavelet transform (EWT) methods were proposed
earlier, but these methods cannot automatically determine the frequency bandwidth of each mode after decompo-
sition [16]. The variational modal decomposition (VMD) method has achieved good results in signal processing
and has been used in fault diagnosis or anomaly detection [17, 18]. VMD determines the frequency center and
bandwidth of each component by iteratively searching for the optimal solution of variational model, so as to
adaptively realize the frequency domain division of the signal and the effective separation of each component.
VMD decomposes the input signal into a number of sub-signals that have specific sparsity in reproducing the in-
put signal. The VMD method has recently been applied to the processing of signals from hydropower equipment
to enable anomaly detection or prediction [14, 19-21].

The state signal of hydropower units can reflect most of the fault information, and it has strong non-stationary
and nonlinear characteristics. By analysing the state information of hydropower units and extracting its charac-
teristics by using time-frequency analysis method, it can assist the fault diagnosis of hydropower units. However,
most of the existing methods are to detect the abnormality or fault, and they stop the operation after finding the
fault or abnormality, lacking the quantitative evaluation of the abnormal state of the hydropower unit equipment.
The main contribution of this paper is that based on the VMD analysis of time-frequency signals, a quantitative
evaluation method of abnormal state of hydropower equipment is proposed. This research allows anomalies to be
detected early in their occurrence, which is beneficial to health management and early warning of hydroelectric
equipment and systems.

2 Degradation Evaluation of Hydropower Equipment

2.1 Variable Modal Decomposition

Variable modal decomposition can divide the signal data to a set of intrinsic mode functions (IMF) with limited
bandwidth, it can automatically and adaptively change the optimal center frequency and bandwidth among differ-
ent IMF [17, 18]. In VMD decomposition, it can be assumed that the original signal

(1) = 4, (1) cos(8, (1) (1)
N 2)
dt

32



Journal of Computers Vol. 35 No. 4, August 2024

where 4, is the instantaneous amplitude and w, is the instantaneous frequency. Here, the intrinsic mode number
of limited bandwidth with stricter constraints is redefined.

Variable modal decomposition is a process to solve variational problems, and the core of VMD is to solve
variational problems through construction. If a modal fraction of a given channel is displayed on the intermediate
frequency spectrum and the limited bandwidth, the original signal is divided into K fractions, and the variational
problem can be regarded as calculating K modal fractions u,. To make the estimated values of broadband and
central spectrum of each modal fraction more accurate, there are the following processes [17].

(1) Hilbert transform is employed to obtain the corresponding unilateral frequency [U(t)+”%]uk (1. Hilbert trans-

form can transform signals in real number domain into analytical signals, and project 1D signals onto 2D plane.
(2) The complex exponents of each mode and center frequency are estimated simultaneously. The exponents

e/ are used to correct the signal and move its frequency spectrum to the corresponding base frequency band
o +L1%u,, e,
7t

(3) When the demodulated signal is used to calculate L, norm, bandwidth of every decomposed mode is esti-

} ; 3)

{”k} = {ul,...,uk} represents IMF components, and their center frequency is {wk} = {601,-'-, wk} .

mated. This problem is described as

min, {;“a Ka(r) + ij %1, (z)} eI
s.t. Zuk =S

To solve the variational constraint problem, Lagrange multiplier 7(f) and second-order penalty factor «

are employed. So a variational unconstrained problem can be obtained. Lagrange multiplier can guarantee the
strictness of constraints, and second-order penalty factor can make signal reconstruction more accurate under
Gaussian noise. Lagrange function is as follows
o L *® — ot
Al o)+ u, (1) |e
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Through the iterative calculation of the process (2) and (3), the central frequency spectrum and width of each
mode can be calculated and updated. So, the sum of bandwidth is minimized, and the optimal value of the origi-
nal signal can be obtained.

VMD decomposition can analyze the spectrum of aperiodic signal and decompose complex signal into multi-
ple harmonic signals. In the actual application, VMD analysis mainly needs to set the variational modal decom-
position modulus K and bandwidth limiting parameter, namely penalty factor « , both of which have great influ-
ence on the actual processing results of VMD analysis.

VMD decomposition has good anti-noise ability, which can overcome the overlapping frequency characteris-
tics that may occur when empirical mode decomposition is used. The most common problem that empirical mode
decomposition may encounter when processing and analyzing signals is frequency aliasing. If the frequency of
an eigenmode function is reasonable, it should be in a relatively concentrated and narrow frequency range, but
frequency aliasing will make the frequency components of an eigenmode function distribute in different eigen-
modes, and VMD can avoid this problem.

2.2 Degradation Evaluation Method

Each component after VMD decomposition forms a matrix. The matrix can be decomposed by singular value.
That means, a group of pairwise orthogonal unit vector sequences can be found, so that the new vector sequences
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obtained after the matrix acts on this vector sequence can be pairwise orthogonal. The decomposed singular val-
ues are arranged in a row as features to form a singular value vector.

Sample entropy is one of the commonly used complexity characteristic indexes, and it is an improved form of
approximate entropy. It measures the probability of new patterns by measuring the complexity of time series. The
smaller the entropy, the smaller the complexity of signal. The sample entropy is calculated for every component
of VMD, and it is regarded as a feature, and these feature values are merged into the singular value vector to ob-
tain the feature vector which is composed of singular value and sample entropy.

To evaluate the degradation of hydropower equipment, Jenson-Shannon (JS) divergence is adopted in this
paper. JS divergence measures the distance of two probability distributions. It is different from Kullback-Leibler
(KL) divergence, especially it is asymmetry, but KL divergence is not [22-24].

KL divergence is defined as

P
D, (P10)=Y P(i)log—~
. (P O) 2,_ (i)log 00) 5)

It represents the difference between two probability distributions of P and Q. Moreover, if the two distribu-
tions are so far apart that there is no overlap, KL divergence cannot be calculated, while JS divergence is a con-
stant. JS divergence is defined as

P+Q
2

P+Q
2

D510V =3 D (P1 20042 D, 0129 | (©6)

By calculating JS divergence of different feature vectors composed of singular values and sample entropy,
we can quantify the distance between these feature vectors and reflect the difference. When in the normal super-
visor state, these feature vectors are very close, and the JS divergence is close to zero. With the degradation of
equipment performance, the distance from the normal state eigenvector is getting bigger and bigger, and the JS
divergence is far away from zero. Therefore, this measure can reflect the degree of equipment performance deg-
radation and is an effective measure of equipment performance degradation.

3 Experimental Results and Discussion

The sensor data of hydropower equipment used in the experiment is obtained by monitoring the unit at the same
acquisition time [14]. The sensor data include oil level in the oil leakage tank and oil pressing device, et al. The
data is complicated, nonlinear and unstable, and their characteristics are not obvious.

The normal signal of oil level in the oil leakage tank is shown in Fig. 1. The variational modal number K of
VMD is 8, and the penalty factor is 2717.04. The VMD decomposition results are shown in Fig. 2 and Fig. 3.
The IMF components processed by VMD are added and compared with the initial signal data, and the residual
value is 0.0089. To determine the variational modal number K and the penalty factor, particle swarm optimiza-
tion algorithm [25-27] is employed to obtain the optimal value of the two parameters. The minimum value of the
envelope entropy is used as object function, as the envelope entropy represents the sparseness of signal. When
IMF component noise is less and feature information is enough, the envelope entropy is smaller. The envelope
entropy £, of the signal x(7) can be calculated as

E,= _Z;V:I‘D/ lgp; , (7
a(j)
=
LY aG) ®

where a(j) is the envelope of modal components, and p; is the probability distribution sequence obtained by nor-
malization of a(j). N is the number of sampling points. The envelope entropy £, is obtained by calculating the
entropy value of p;.
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Fig. 1. Oil level in the oil leakage tank
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Fig. 3. Frequency diagram of VMD result of oil level signal
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According to the degradation evaluation method proposed in section 2.2, the feature vector composed of sin-
gular value and sample entropy is calculated for the normal signal. Under certain operating conditions, normal
signal of oil level is acquired to calculate feature vector. A total of 720 non-anomalous data pieces under the
same operating conditions are collected and their feature vectors are calculated.

After the degraded data are collected, VMD decomposition is performed respectively, and the feature vectors
are calculated. JS divergence is used to quantify the distance between degraded feature vectors and normal fea-
ture vectors. The JS divergences of these data are calculated and their distribution is plotted in Fig. 4. The distri-
bution of JS divergence is roughly normal. The mean, variance and standard deviation of the JS divergence were
0.29957, 0.000047 and 0.006859, respectively. The minimum and maximum values in this distribution are 0.018
and 0.041, respectively, and the distance from the mean of this distribution is -0.012 and 0.011, respectively.
These distances are 1.743 times the standard deviation. Therefore, it is more reasonable to choose the position of
6 standard deviations as the threshold for anomalies, that is, the threshold of JS divergence is 0.03024.
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Fig. 4. JS divergence distribution of non-anomalous oil level signals

The JS divergence results of degraded oil level signal are shown in Fig. 5. The marked point A is the time of
the 16th minute. The hydropower equipment is in the normal state before A, and it begins to degrade after A.
When the abnormality detection method [14] is applied to the degradation process, the abnormality can be de-
tected after the 102th minute, marked as B. If the threshold value of JS divergence is set to 0.3024, an abnormal
alarm can be generated in the 67th minute, which is obviously earlier than the normal abnormal detection meth-
od.
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Fig. 5. JS divergence of degradated oil level signal
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4 Conclusion

After some modal signals are obtained from a hydropower equipment signal through VMD, singular value and
sample entropy features are extracted from the modal signals of signals. And these features are measured by JS
divergence to evaluate the degradation of hydropower equipment. The usual anomaly detection and fault diagno-
sis methods can only be detected when the equipment is abnormal or the fault reaches a certain degree. The pro-
posed method provides a complete quantitative evaluation of the degradation process from normal to abnormal.
By setting a reasonable threshold, the proposed method can be used for early warning of anomalies. This is very
useful for the complete monitoring of the health status of hydropower equipment. In the future, the method will
combine the state prediction of hydropower equipment to provide quantitative prediction of the degree of abnor-
mality of hydropower equipment.
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