
Journal of Computers Vol. 35 No. 4, August 2024, pp. 39-58
doi: 10.53106/199115992024083504004

39* Corresponding Author

Improved Gray Wolf Algorithm Based on African Vulture Multi-Strategy 
and Its Application in Channel Estimation

Ji-Hua Chai, Li-Yi Zhang, Ting Liu, Yun-Shan Sun, and Yong Zhang*

School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
 Cjh999L@outlook.com, {zhangliyi, liuting, sunyunshan, zhangyong}@tjcu.edu.cn 

Received 3 May 2023; Revised 30 May 2023; Accepted 31 May 2023

Abstract. The Grey Wolf Optimizer (GWO) is known for its simple structure, easy implementation, and few 
control parameters, but it has problems such as slow convergence, local optimization of capture, and late re-
duction of population diversity. To address these shortcomings, this paper proposes fusing three different strat-
egies. Firstly, the African vulture algorithm is combined with the GWO to exploit the fast convergence speed 
and high accuracy of the African vulture algorithm in finding the best solution. Secondly, the leading wolf 
guidance strategy is introduced to increase population diversity. Finally, adaptive weights are added to dynam-
ically adjust the search step size and balance the global and local search ability of the GWO. The proposed al-
gorithm is validated through testing on 23 benchmark test functions, demonstrating its superior performance. 
For millimeter-wave large-scale MIMO systems, a deep convolutional neural network is used for channel 
estimation, using the correlation between space and frequency to simultaneously input the corrupted channel 
matrix of adjacent subcarriers into the convolutional neural network. Furthermore, we address the drawbacks 
of manually setting the hyperparameters of convolutional neural networks, which may lead to overfitting and 
large errors. Therefore, we propose to use the improved grey Wolf algorithm (AVGWO) of African vulture to 
find the hyperparameters of the convolutional neural network model and improve the accuracy of the model 
prediction channel. 

Keywords: grey wolf optimization algorithm, African vulture, bootstrap strategy, adaptive weighting, channel 
estimation

1   Introduction

Meta-heuristic optimization algorithm are optimization algorithms that achieve optimal solutions by simulating 
natural and human intelligence. Since their introduction in the 1960s, they have experienced rapid development 
and can be divided into four main categories.

The first category is nature-inspired evolutionary algorithms (NEA), which are optimization algorithms based 
on genetics and natural selection. In NEA, the population is composed of many individuals, each of which rep-
resents a solution. The algorithm chooses the best solution acting as a parent and generates new individuals 
through interchange and mutation. The algorithm then chooses the fittest individuals as part of the new genera-
tion population, and repeats this process until termination conditions, such as maximum iterations or finding the 
optimal solution. Examples of NEA include Genetic Algorithm (GA) [1] and Differential Evolution (DE) [2]. 
The social interactions and information sharing of biological swarms in nature serve as the basis for the second 
category of intelligence algorithms, known as swarm-based intelligence algorithms (AIs). They use swarm in-
telligence for collaborative search to find the optimal solution in the search space. Predation, reproduction, and 
hunting are three of the most typical and well-known social behaviors of animals. Numerous meta-heuristic opti-
mization algorithm have been proposed based on these behaviors, including Particle Swarm Optimization (PSO) 
[3], Ant Colony Optimization [4], Artificial Bee Colony (ABC) [5], Artificial Fish Swarm Algorithm (AFSA) [6], 
Grey Wolf Optimizer (GWO) [7]. The third category pertains to meta-heuristic optimization algorithm enlight-
ened by human behaviors, encompassing traits like teaching, socializing, learning, emotional intelligence, and 
managerial skills. Such as algorithms include Teaching-Learning-Based Optimization (TLBO) [8] and Political 
Optimizer (PO) [9]. Algorithms based on physics and chemistry comprise the fourth category, which majorly 
mimic the physical laws and chemical reactions of nature. In this category, algorithms emulate the laws of phys-
ics and chemistry to navigate the search space. They leverage concepts such as gravity, inertia, light refraction, 
and molecular dynamics to facilitate communication and collaboration among individuals. Noteworthy examples 
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of these algorithms are Gravitational Search Algorithm (GSA) [10], Charged System Search (CSS) [11], Atom 
Search Optimization (ASO) [12].

The Grey Wolf optimizer was introduced by the distinguished scholar Mirjalili of Griffith University in 
Australia in 2014. It draws inspiration from the hunting behavior of wolves and is renowned for its simple struc-
ture, few control parameters, and ease of implementation, making it a popular subject of study among research-
ers. By emulating the adaptive and collaborative nature of wolves, GWO can efficiently explore complex search 
spaces and converge towards optimal solutions. The algorithm has already demonstrated significant potential in 
tackling diverse optimization challenges across a range of fields, and it continues to inspire new developments 
and improvements in the field of Meta-heuristic optimization.

In the domain of flow shop scheduling, Jeet [13] applied the GWO algorithm to the flow shop scheduling 
problem, the researchers compared the results obtained using GWO with those obtained using multi-objective 
genetic algorithms, particle swarm algorithms, and NSGA-II algorithms, and demonstrated the superior perfor-
mance of GWO in resolving this scheduling issue. In another study, Lu et al. [14] introduced a boosted Grey 
Wolf algorithm, which amalgamates the diversity of cellular automat with the enhanced benefits of variable 
neighborhood search. This algorithm was applied to address the mixed workshop scheduling, achieving promis-
ing results. In the domain of path planning, the study by Luo et al. [15] presented a superior technique utilizing 
Grey Wolf Optimization to achieve automatically route planning for mobile automation in sophisticated circum-
stances. By leveraging the power of GWO, this algorithm showcased remarkable efficacy in navigating intricate 
environments and avoiding obstacles. These studies showcase the versatility and robustness of GWO in tackling 
complex optimization problems across diverse domains; Shi et al. [16] stated the AP-GWO approach to adaptive 
multi-drone path planning to boost the Grey Wolf algorithm for problems such as slow convergence of path plan-
ning and insufficient flight paths. In the domain of image classification, Convolutional Neural Networks (CNNs) 
were utilized by Ladi et al. [17] to categorize hyperspectral pictures by employing a novel method, where the 
GWO algorithm was utilized to boost six hyperparameters of the CNN. Compared with traditional models, the 
proposed Convolutional neural networks optimized by GWO had higher accuracy. In the domain of signal han-
dling, Saxena et al. [18] advocated the Evolutionary Operators Equipped Grey Wolf Optimizer (E-GWO), which 
combines tournament selection operators, cross and alterations implemented during the position update step and 
applied it to harmonic estimation.

In this paper, we apply the GWO algorithm and the proposed AVGWO to channel estimation problems in the 
field of signal processing. As we all know, in communication, due to the non-ideal characteristics of the transmis-
sion channel and the influence of superimposed noise, it is difficult to guarantee the reception quality. Therefore, 
channel estimation is necessary to improve communication quality. With the increasing maturity of machine 
learning theory and technology, many scholars have applied machine learning to channel estimation. Orthogonal 
frequency-division multiplexing (OFDM) receivers are currently utilized in wireless communications. Gao et al. 
[19] proposed a new Deep Learning (DL) method that combines DL with expert knowledge to replace existing 
orthogonal frequency-division multiplexing receivers in wireless communications. The claimed DL receiver 
utilizes a block-by-block method of signal processing. Compared to the LMSE error algorithm, the claimed DL 
receiver provides more precise channel estimation. ChanEstNet, a cutting-edge Deep Learning approach, was 
constructed by Liao et al. [20] for channel estimation in wireless communication. Convolutional Neural Network 
(CNN) is utilized to derive feature vectors of the channel response, and a Recursive Neural Network (RNN) 
is utilized to carry out channel estimate. In comparison to conventional approaches, simulation observations 
demonstrate that the advocated channel estimation approach exhibits lower calculating sophistication and sub-
stantially boosted efficiency in rapid-fire mobile atmospheres. Dong et al. [21] proposed to forecast more genuine 
channels by utilizing a conditional Generative Adversarial Network through oppositional learning of two DL net-
works. Simulation Results demonstrate that the newly suggested cGAN-based method performs better than the 
current DL approaches and excellent reliability in systems utilizing massive MIMO.

This paper proposes the use of deep CNN for channel estimation in millimeter-wave massive MIMO-OFDM 
systems. The advocated method is based on a spatial-frequency CNN for channel estimation, taking advantage of 
the correlation between adjacent subcarriers in OFDM systems. Deep CNN have numerous parameters, such as 
learning rates, kernel sizes, and numbers, that directly impact their performance. Therefore, setting the optimal 
hyperparameters of deep CNN is critical. To generate the best network hyperparameter configurations, the paper 
introduces the GWO algorithm and a CNN network based on GWO is proposed to enhance the performance of 
deep CNN in channel estimation. As the GWO algorithm flaws comprise a poor rate of convergence and being 
susceptible to regional optima, the paper also employs the proposed AVGWO algorithm to optimize the hyperpa-
rameters of deep CNN and verify its advantages.
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2   Basic Principles of Traditional Grey Wolf Optimizer 

In 2014, Mirjalili et al [7] presented the GWO, a meta-heuristic optimization algorithm method. The α , β , and 
δ wolves as the optimal solutions, driving ω wolves to migrate and look for the overall optimal solution, which 
served as the inspiration for this algorithm. The three primary phases of wolf hunting in the wild are as follows.

2.1   Encircling Phase

During the encircling process, wolves use the following position update equation:

( 1) -pt + = ×DX X A  .                                                                (1)

Where t is the current iteration number, pX  is the position vector of the prey, ( 1)t +X  is the position vector 
of the wolf in the next iteration, D  is the distance between the wolf and the prey:

p| ( ) - ( ) |t t= ⋅D C X X  .                                                                (2)

Where ( )tX  is the position vector of the current wolf, A and C are coefficient vectors:

12= ⋅ ⋅ −A r a a  .                                                                     (3)

22= ⋅C r  .                                                                         (4)

Where r1 and r2 are random vectors in [0,1], the components of a  decrease linearly from 2 to 0, as follows:

max

22
t

t
= −a  .                                                                       (5)

Where maxt  is the maximum number of iterations.

2.2   Hunting Phase

In the GWO algorithm, the α , β , and δ wolves are considered as the optimal solutions, and the rest of the wolves 
are influenced by these leaders to move towards the global optimal solution. During the hunting process, the        
α , β , and δ wolves have a better understanding of the prey’s position. Therefore, the positions of the α , β, and δ 
wolves are used as the prey’s location, and each wolf changes its position using the following equation:

1 2 3( 1)
3

t
+ +

+ =
X X X

X  .                                                             (6)

Where 1X , 2X  and 3X  are calculated as follows:

1 1

2 2

3 3

α α

β β

δ δ

= − ⋅
 = − ⋅
 = − ⋅

X X A D
X X A D
X X A D

 .                                                                (7)

Where 1X , 2X  and 3X  are the positions of the top three wolves in the population at time t , and A1 , A2 , and 
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A3 are coefficient vectors, which can be calculated using equation (3). Dα , Dβ , and Dδ are the distances between 
grey wolf and α , β , and δ wolves, calculated as follows:

1

2

3

α α

β β

δ δ

 = ⋅ −
 = ⋅ −


= ⋅ −

D C X X

D C X X

D C X X

 .                                                                 (8)

Where C1 , C2 , and C3 are coefficient vectors, calculated using equation (4).

2.3   Attacking Phase

When the prey has ceased running, the wolf will attack it, and this process is controlled by a. As equation (3) 
shows, the range of the vector a is [0, 2], and as a decreases, the components of the vector A  also decrease. 
When |a|<1, the wolf approaches the prey and launches an attack; when |a|>1, the wolf moves away from the prey 
and seeks new prey.

3   Principle of African Vulture-based and Multi-strategy Fusion GWO Algorithm

The GWO algorithm boasts several advantages, including its simple principles, minimal parameter tuning re-
quirements, ease of implementation, and straightforward operations. However, like many algorithms, the GWO 
is not without its shortcomings, including poor solution accuracy and sluggish convergence, insufficient popula-
tion diversity, and a propensity for local optima. In response, this article presents a series of novel improvement 
strategies aimed at addressing these issues. By implementing these enhancements, we intend to boost the overall 
efficacy and capability of the GWO algorithm, enabling it to provide more accurate and efficient solutions across 
a broader range of applications.

3.1   Improvement of Bootstrap Location

Search Mechanism Based on the African Vulture Algorithm.  One of the main drawbacks of the GWO is 
slow convergence, and one reason for this slow convergence is that the grey wolf optimizer only considers the 
distance between the current wolf and the target solution when updating the wolf position, without considering 
the distance between other wolves and the target solution and other factors. This local update strategy may cause 
the algorithm to get trapped in regional optimal solutions, which diminishes convergence. In order to accelerate 
the convergence speed, this paper combines the grey wolf optimizer with the African vulture algorithm and intro-
duces a search mechanism based on the African vulture algorithm in the pursuit phase of the grey wolf optimizer. 
The African vulture algorithm [22] simulates the foraging behavior of African vultures for problem optimization. 
African vulture search for food, and if vultures are in a satiated state, they have high energy and can fly lengthy 
distances to find food. Conversely, if African vulture are starved, vulture will not have sufficient energy to flight 
lengthy distances. The fullness rate is expressed in equation (9).

3
max

(2 1) 1 tr
t

γ
 

= ⋅ + ⋅ ⋅ − + 
 

F H  .                                                       (9)

Where γ is the random coefficient of [-1, 1] and the equation for H  is the following description:

max max

sin cos 1
2 t 2 t

t tλ π π    
= ⋅ ⋅ + ⋅ −         

H h  .                                            (10)
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Where h  is the random vector of [-2, 2] and λ  is a constant.
In the pursuit phase of the GWO, since wolfs will search for prey in different regions, these regions based 

on two diverse policies as follows and use the parameter to choose any strategy, p1 is a constant whose value is 
between 0 and 1, while rand  is a casual number in the range 0 to 1. When p1 ≥ rand , the grey wolf optimizer 
selects to randomly search for prey in the area of the best wolves, and when p1 ≥ rand , the grey wolf chooses to 
find its prey randomly in the area of (lb , up) , as in equation (11).

( )( )4 5

                               if ( 1 )    
( 1)

   if ( 1 < )    
p rand

t
p rand

α α

α

− ⋅ ≥+ =  − + ⋅ − ⋅ +

X F
Y

X F r up lb r lb
D

 .                            (11)

Where Y(t + 1) is the next generation of the wolf’s position vector, r4 is a random vector from 0 to 1, up and 
lb is the upper and lower bounds of the population, and r5 is a random vector from 0 to 1 in order to enhance 
randomness.

Search Mechanism Based on the Leading Wolf Guidance Strategy.  During the pursuit phase of the GWO, 
updating positions are performed using only the places of the α , β , and δ wolves. However, when the α, β, and δ 
wolves are trapped in local optima, this can decrease in population diversity and an early convergence to a local 
optimum. Additionally, in the GWO, the α wolf plays a fundamental part as the target solution for the iteration to 
end. To address these issues, the Grey Wolf optimizer introduces a weight vector based on to give greater weight 
to the α wolf when changing the location of the wolves. Therefore, when changing the location of the wolves, a 
greater emphasis is placed on the u update base vector for the α wolf, assigning it more weight. Moreover, to in-
crease population diversity, an update perturbation vector Δ and a random adjustment factor r6 are incorporated, 
as described in equations (13).

6( 1)Z t u r+ = + ⋅∆  ,                                                              (12)

( ) ( ) ( )

1 2 3
1 1 1                             
2 3 6

1 1
2 4

u X X X

X X X X X Xα β δ

 = ⋅ + ⋅ + ⋅

  ∆ = ⋅ − + ⋅ − + − 

 .                                        (13)

In the above improved strategy, the search approach based on the African vulture algorithm and the leading 
wolf guidance strategy, eventually adopting a greedy mindset to select one as the location for the next iteration of 
the current grey wolf.

{ ( +1) (F(Y) F(Z))
( 1)=

( +1) (F(Y) F(Z))
t if

t
t if

≤
+

>
Y

X
Z

 .                                                 (14)

Where F(Y) and F(Z) are the current adaptation values of the grey wolf, respectively.

3.2   Adaptive Adjustment of Weights

The role of inertia weight in the Grey Wolf Optimization algorithm cannot be overstated, as it plays a fundamen-
tal part in determining the algorithm’s convergence velocity and optimization precision. If the weight of linear 
inertia is not appropriately selected, it can negatively impact the algorithm’s convergence velocity. Therefore, 
this article proposes an adaptive approach to changing the weight based on the distribution of the GWO popula-
tion. In Equation (16), the inertia weight w  can significantly affect the algorithm’s ability to conduct both global 
and regional searches, also accelerate convergence velocity and improve optimization precision. When the inertia 
weight is high, the algorithm tends to favor global explore, while a low inertia weight favors regional search. In 
the algorithm, the inertia weight w  is used to influence the three alpha wolves’ update positions with respect to 
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other wolves.

1 1

2 2

3 3

α α

β β

δ δ

 = ⋅ − ⋅


= ⋅ − ⋅
 = ⋅ − ⋅

X w X A D
X w X A D

X w X A D
 .                                                             (15)

( )1 worst best 2d d
+1t

−
= ⋅ − + ⋅

up lb
w X X  .                                                (16)

In this algorithm, 1d  and 2d  are two constant parameters, worstX , indicate the location vectors of the worst, 

bestX  indicate the location vectors of the finest wolves in the current population. When the GWO algorithm’s 
early iterations, if the wolf pack becomes trapped in a regional optimum, and the disparities between the best 
and worst solutions is insignificant, increasing w  can boost the algorithm’s global search capability. Given that 
the latter portion of w  is inconsequential to the search, more sizable strides can be taken to amplify the search 
scope, thereby obviating the risk of being ensnared in regional optimum. With the amplification of iterations, the 
impact of the latter half progressively abates. If the optimum solution has not yet been obtained at this point, the 
first half of w  dominates, enabling larger steps to be taken to seek out the optimum solution.

3.3   Flowchart of AVGWO Algorithm

Fig. 1. Illustrates the flow diagram of the AVGWO algorithm

Fig. 1. Flow graph of AVGWO algorithm
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4   Performance Testing Based on African Vulture and Multi-Strategy Fusion Grey Wolf 
Optimization Algorithms

This study evaluated the manifestation of the AVGWO algorithm by conducting experiments on 23 bench-
mark test functions, In the Table 1, such as single-peak, multi-peak, fixed-dimension multi-peak test functions. 
AVGWO was compared with traditional GWO and other enhanced GWO, such as Modified Grey Wolf Optimizer 
(MGWO) that Padhy et al. [23] suggested, Improved Grey Wolf Optimizer (I-GWO) that Nadimi-Shahraki et al. 
[24] suggested, Soloklo et al. [25] suggested Fast-Dynamic GWO (FDGWO), and Aquila Grey Wolf Optimizer 
(AGWO) that Ma et al. [26] suggested. The number of populations was set to 50 and the number of iterations 
was set to 1000, which were all carried out under identical circumstances. To minimize the impact of random-
ness, each method was independently evaluated 30 times toward each test function.

Table 1. Benchmark functions

Function Dim Range Fmin

( ) Dim 2
i=11 iF x = x∑ 30 [-100,100] 0

( ) DimDim

i=12 i ii=1F x = x + x∑ ∏ 30 [-10,10] 0

( ) ( )2Dim i

i=1 j-13 jF x = x∑ ∑
30 [-100,100] 0

( ) { }F = ≤ ≤4 max ,1i ix x x i Dim 30 [-100,100] 0

( ) ( ) ( )2 2Dim-1 2
i=i5 i+1 i iF x = 100 x - x + x - 1 

 ∑
30 [-30,30] 0

( ) ( )  ∑
2Dim

i=i6 iF x = x +0.5
30 [-100,100] 0

( ) )== + ∑ rand4
7 0,1Dim

i i iF x ix 30 [-1.28,1.28] 0

( )18 ( ) sin
=

= −∑ Dim

i i iF x x x 30 [-500,500] −418.9829×Dim

( )2
9 1
( ) 10cos 2 10

=
 = − + ∑Dim

i ii
F x x xπ 30 [-5.12,5.12] 0

( )2
10

1 1

1 1( ) 20exp 0.2 exp cos 2 20
= =

   
= − − − + +       

∑ ∑
n n

i i
i i

F x x x e
n n

π
30 [-32,32] 0

2
11 1

1

1( ) cos 1
4000 =

=

 
= − + 

 
∑ ∏

n
Dim i

ii
i

x
F x x

i

30 [-600,600] 0

( ) ( ) ( ){ } ( )21 2 2
12 1 11 1

( ) 10sin 1 1 10sin ,10,100,4−

+= =
 = + − + + ∑ ∑Dim Dim

i i ii i
F x y y y u x

n
π

π π

( )
( )

( )

1
1 , , , 0

4

 − >
+ = + = − < <


− − < −

m
i i

i
i i i

m
i i

k x a x a
x

y u x a k m a x a

k x a x a

30 [-50,50] 0
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( ) ( ) ( )

( ) ( )

( )

22 2
1 1

13 2 2

1

sin 3 1 1 sin 3 1
( ) 0.1

1 1 sin 2

,5,100,4

Dim
i ii

n n

Dim
ii

x x x
F x

x x

u x

π π

π
=

=

  + − + + +  =  
 − +   

+

∑

∑

30 [-50,50] 0

( )

1

25
14 621

1

1 1( )
500

−

=

=

 
 = +
 + − 

∑
∑j

i iji

F x
j x a

2 [-65,65] 0.998

( ) 22
11 1 2

15 21
3 4

( )
=

 +
 = −

+ +  
∑ i i

ii
i i

x b b x
F x a

b b x x

4 [-5,5] 0.00030

2 4 6 2 4
16 1 1 1 1 2 2 2

1( ) 4 2.1 4 4
3

= − + + − +F x x x x x x x x
2 [-5,5] -1.0316

2
2

17 2 1 1 12
5.1 5 1( ) 6 10 1 cos 10

84
   = − + − + − +   
   

F x x x x x
π ππ

2 [-5,5] 0.398

( ) ( )
( ) ( )

2 2 2
18 1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

( ) 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

 = + + + − + − + + 
 × + − × − + + − + 

F x x x x x x x x x

x x x x x x x x

2 [-2,2] 3

( )
3 24

19 1
1

( ) exp
=

=

 
= − − − 

 
∑ ∑i ij j iji

j

F x c a x p
3 [1,3] -3.86

( )
0 24

20 1
1

( ) exp=

=
=

 
= − − − 

 
∑ ∑i

i ij j iji
i

F x c a x p
6 [0,1] -3.32

( )( )
15

21 1
( )

−

=
 = − − − +  ∑ T

i i ii
F x X a X a c

4 [0,10] -10.1532

( )( )
17

22 1
( )

−

=
 = − − − +  ∑ T

i i ii
F x X a X a c

4 [0,10] -10.4028

( )( )
110

23 1
( )

−

=
 = − − − + ∑ T

i i ii
F x X a X a c

4 [0,10] -10.5363

4.1   Comparison of AVGWO Algorithm with Other Improved Grey Wolf Optimizers

Table 2 displays the average and standard deviation of AVGWO algorithm and other improved Grey Wolf opti-
mizers. It is capable of being illustrated that AVGWO performs better than GWO, MGWO, I-GWO, and AGWO 
in F1–F13. In single-peak functions F1-F4 and multi-peak functions F9 and F11, both AVGWO and FDGWO 
obtain the finest solution, but FDGWO is faster to converge than AVGWO. However, in F5, F6, F8, F12, and 
F13, FDGWO showed poorer performance. In F17, F18, and F20, AVGWO was less effective than the others but 
better than FDGWO, and in F21, F22, and F23, AVGWO was more effective. Fig. 2 displays the convergence 
curves of AVGWO, GWO, MGWO, I-GWO, FDGWO, AGWO in the benchmark functions F1-F15, F17-F23.
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Table 2. The results of GWO, MGWO, I-GWO, FDGWO, AGWO and AVGWO on 23 benchmark problems 

Function GWO MGWO I-GWO FDGWO AGWO AVGWO
F1 Average 2.55E-70   1.10E-93  5.63E-71 0  4.18e-321 0

Std 3.72E-70   5.15E-93  2.11E-70 0 0 0
F2 Average 5.01E-41   6.62E-55  1.19E-42 0  4.76E-179 0

Std 5.02E-41   7.78E-55  1.73E-42 0 0.00E+00 0
F3 Average 3.68E-20   2.16E-26  5.61E-14 0  2.74E-182 0

Std 8.26E-20 4.58E-26 2.22E-13 0 0 0
F4 Average 1.95E-17 7.15E-25 1.14E-14 0  4.12E-140 0

Std 3.40E-17 1.17E-24 2.41E-14 0  1.44E-139 0
F5 Average 2.64E+01 2.62E+01 2.24E+01  2.90E+01 2.72E+01  4.06E-08

Std 5.31E-01 6.60E-01 3.40E-01 4.61E-07 4.46E-01 2.71E-08
F6 Average 3.43E-01 3.84E-01 1.04E-05  3.54E+00 2.56E+00   1.15E-10

Std 3.39E-01 3.01E-01 2.42E-06  2.48E-01 6.19E-01   2.94E-10
F7 Average 4.18E-04 3.22E-04 7.63E-04  2.52E-05 6.78E-05 4.43E-05

Std 1.60E-04 1.82E-04 3.40E-04  1.77E-05 4.70E-05 2.55E-05
F8 Average -6.35E+03 -5.63E+03 -9.56E+03  -2.36E+03  -3.53E+03  -1.26E+04

Std 7.13E+02 1.07E+03 1.36E+03  3.83E+02 3.88E+02  5.83E-06
F9 Average 1.90E-01 0 1.49E+01 0 0 0

Std 1.02E+00 0 7.35E+00 0 0 0
F10 Average 1.23E-14 7.99E-15 9.77E-15 8.88E-16 4.44E-15 8.88E-16

Std 3.13E-15 1.32E-15 2.99E-15 0 6.38E-16 0
F11 Average 1.35E-03 0 3.04E-03 0 0 0

Std 3.51E-03 0 6.83E-03 0 0 0
F12 Average 2.25E-02 2.87E-02 7.44E-07 3.71E-01 1.86E-01 1.62E-11

Std 1.12E-02 1.08E-02 2.25E-07 1.08E-01 9.58E-02 2.87E-11
F13 Average 3.23E-01 3.71E-01 1.61E-05 3.00E+00 1.92E+00 7.35E-11

Std 1.82E-01 1.49E-01 5.02E-06 0 2.35E-01 1.26E-10
F14 Average 2.57E+00 4.65E+00 9.98E-01 7.05E+00 3.98E+00   9.98E-01

Std 2.64E+00 4.38E+00 0 3.30E+00 3.29E+00 1.01E-13
F15 Average 4.32E-03 1.04E-03 3.07E-04 9.07E-02 2.05E-03 4.23E-04

Std 8.02E-03 3.60E-03 5.36E-10 4.48E-02 5.90E-03 6.17E-05
F16 Average -1.03E+00 -1.03E+00  -1.03E+00 -9.25E+00  -1.03E+00  -1.03E+00

Std 1.11E-09 1.64E-08 6.66E-16 6.57E-02 4.80E-08 5.20E-05
F17 Average 3.98E-01 3.98E-01 3.98E-01 2.00E+00 3.98E-01 4.14E-01

Std 7.12E-08 3.94E-07 0 1.32E+00 2.97E-06 2.00E-02
F18 Average 3.00E+00 3.00E+00 3.00E+00 6.92E+00 3.00E+00   3.01E+00

Std 3.37E-06 4.68E-06 9.49E-16 3.92E+00 7.40E-08 1.55E-02
F19 Average -3.00E-01 -3.00E-01  -3.00E-01 -3.00E-01  -3.00E+00  -3.00E-01

Std 2.22E-16 2.22E-16 2.22E-16 2.56E-16 2.22E-16 0
F20 Average -3.23E+00 -3.25E+00  -3.30E+00 -1.78E+00  -3.24E+00  -2.87E+00

Std 7.51E-02 7.62E-02 4.13E-02 5.51E-01 5.80E-02 2.23E-01
F21 Average -9.23+00 -9.47E+00  -1.01E+01 -5.34E-01  -8.89E+00  -1.02E+01

Std 1.49E+00 1.73E+00 1.67E-01 1.83E-01 2.65E+00 1.93E-07
F22 Average -1.02E+01 -1.02E+01  -1.04E+01 -8.17E-01  -1.04E+00  -1.04E+01

Std 1.67E-04 9.54E-01 4.23E-09 4.10E-01 2.02E-03 2.30E-07
F23 Average -1.05E+01 -1.03E+01  -1.05E+01 -8.25E-01  -9.45E+00  -1.05E+01

Std 1.89E-04 9.62E-01 2.84E-12 2.52E-01 2.94E+00 5.84E-08
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Fig. 2. Convergence curve
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4.2   Comparison of AVGWO with Other Meta-heuristic Algorithms

To evaluate the suggested AVGWO algorithm against alternative metaheuristic algorithms, such as sine cosine 
algorithm [27], salp swarm algorithm [28], simulated annealing algorithm [29], whale algorithm [30], and Harris 
Hawk algorithm [31]. The experiments were conducted independently for 30 times. The outcomes of the experi-
ment are displayed in Table 3. It can be noticed that AVGWO found the optimal solutions for F1-F4, F9, and F11 
functions, indicated in bold font, which represents excellent performance among all testing algorithms.

Table 3. The results of AVGWO with metaheuristic algorithms on 23 benchmark problems

Function SCA SSA SA WOA HHO AVGWO
F1 Average 3.38E-03 9.08E-09  3.27E-12  1.01E-164 1.83E-193 0

Std 1.49E-02 1.64E-09  9.87E-12 0 0 0
F2 Average 7.09E-06 3.96E-01 1.48E-07   2.48E-110 1.38E-99 0

Std 1.68E-05  7.77E-01  1.77E-07   1.14E-109 7.39E-99 0
F3 Average  2.57E+03  5.16E+01  2.50E+03   9.88E+03  2.26E-165 0

Std  4.13E+03  4.18E+01  7.87E+02   5.41E+03 0 0
F4 Average  1.50E+01  3.92E+00  4.44E-01   2.71E+01 7.28E-95 0

Std  1.10E+01  2.28E+00  1.11E-01   2.75E+01 3.88E-94 0
F5 Average  2.60E+02  7.99E+01   7.65E+01   2.65E+01 8.01E-04  4.06E-08

Std  8.75E+02  1.07E+02   7.72E+01   2.85E-01 1.08E-03  2.71E-08
F6 Average  4.39E+00  9.05E-09   4.63E-12   4.10E-03 1.53E-05  1.15E-10

Std  6.33E-01  1.90E-09   1.49E-11   1.87E-03 1.88E-05  2.94E-10
F7 Average  2.96E-02  5.39E-02  7.19E-02   9.90E-04 4.63E-05  4.43E-05

Std 3.03E-02  1.70E-02  2.31E-02   9.95E-04 3.90E-05  2.55E-05
F8 Average -4.02E+03  -7.65E+03  -1.25E+04  -1.20E+04  -1.26E+04  -1.26E+04

Std 2.85E+02 7.87E+02 1.03E+02 7.66E+02 2.12E-01 5.83E-06
F9 Average 1.97E+01 5.05E+01 5.01E-01 0 0 0

Std 3.12E+01 1.81E+01 7.15E-01 0 0 0
F10 Average 1.12E+01 1.54E+00 9.41E-07 3.26E-15 8.88E-16 8.88E-16

Std 9.51E+00 8.53E-01 1.48E-06 2.12E-15 0 0
F11 Average 1.51E-01 1.23E-02 2.95E-02 7.61E-04 0 0

Std 2.07E-01 1.17E-02 2.43E-02 4.10E-03 0 0
F12 Average 1.88E+00 3.61E+00 1.02E-14 2.89E-03 5.93E-07 1.62E-11

Std 4.00E+00 2.29E+00 2.26E-14 9.04E-03 6.47E-07 2.87E-11
F13 Average 4.08E+00 6.93E-03 1.43E-12 4.28E-02 1.13E-05 7.35E-11

Std 6.15E+00 9.13E-03 7.32E-12 4.81E-02 1.78E-05 1.26E-10
F14 Average 1.26E+00 9.98E-01 9.98E-01 1.46E+00 9.98E-01 9.98E-01

Std 6.74E-01 2.55E-16 8.39E-12 1.80E+00 7.78E-11 1.01E-13
F15 Average 7.69E-04 1.47E-03 5.46E-03 5.97E-04 4.53E-04 4.23E-04

Std 3.33E-04 3.52E-03 8.15E-03 3.36E-04 2.71E-04 6.17E-05
F16 Average -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00

Std 1.59E-05 1.04E-14 1.43E-11 1.20E-11 1.11E-12 5.20E-05
F17 Average 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.14E-01

Std 5.30E-04 2.00E-15 8.07E-12 1.53E-07 3.85E-09 2.00E-02
F18 Average 3.00E+00 3.00E+00 9.30E+00 3.00E+00 3.00E+00 3.01E+00

Std 1.02E-05 7.12E-14 2.05E+01 2.38E-06 7.91E-10 1.55E-02
F19 Average  -3.00E-01   -3.00E-01  -3.00E-01  -3.00E-01  -3.00E-01   -3.00E-01

Std 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 0
F20 Average  -2.95E+00  -3.23E+00  -3.27E+00  -3.26E+00  -3.17E+00 -2.87E+00

Std 3.57E-01 5.29E-02 5.93E-02 7.58E-02 9.17E-02 2.23E-01
F21 Average  -3.18E+00  -9.06E+00  -4.88E+00  -9.81E+00  -5.56E+00 -1.02E+01

Std 1.77E+00 2.23E+00 2.60E+00 1.27E+00 1.53E+00 1.93E-07
F22 Average  -4.76E+00  -8.86E+00  -4.74E+00  -9.57E+00  -5.61E+00 -1.04E+01

Std 1.89E+00 2.86E+00 2.77E+00 2.15E+00 1.57E+00 2.30E-07
F23 Average  -4.64E+00  -8.70E+00  -4.11E+00  -9.00E+00  -5.49E+00 -1.05E+01

Std 1.80E+00 3.10E+00 3.02E+00 2.85E+00 1.35E+00 5.84E-08
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5   Channel Estimation Model

Millimeter-wave (mmWave) communication is a promising technology for achieving high data rates due to its 
wide bandwidth. However, the high propagation loss of mmWave signals presents a significant challenge, which 
can be overcome using MIMO techniques. In mmWave mass MIMO systems, providing each antenna with a spe-
cialized chain of radio frequency (RF) is difficult due to limited physical space and high power consumption. To 
address this issue, two-stage structures based on phase shifters, referred to as hybrid structures, are widely em-
ployed in transmitters and receivers to link a lot of antennas with less RF chains. This paper proposes using deep 
convolutional neural networks (CNNs) for channel estimation in mmWave large-scale MIMO-OFDM systems. 
To make use of relevance between channel of subcarrier adjacent to each other in OFDM, this article describes a 
method for channel estimation based on spatial frequency CNN (SF-CNN). Input coarse estimated channel ma-
trix at neighboring subcarriers to CNN simultaneously to improve better accuracy and efficiency [32].

In a millimeter-wave large-scale MIMO-OFDM system, as in Fig. 3, there are NT antennas and N T
RF RF chains 

at the transmitter side and NR antennas and N R
RF RF chains at the receiver side. A phase shifter is used to connect 

the antennas, in this paper NT = 32, NR =16, N T
RF = N R

RF = 2.
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Where ( )20l αα σ∼ ，  is the spread gain of the first path, the mean power gain is 2
ασ , L is the count of 

paths, the latency of the l th path is indicated by lτ , while lϕ  and lφ ∈ [0, 2] signifies the azimuths of arriv-
al and departure (AoA/AoD) of the receiver and transmitter, respectively. In the case of a uniform linear array 
(ULA), the corresponding response vector can be denoted as:
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Where d  and λ  denote the separation between neighboring antennas and the wavelength of the carrier signal, 
respectively. Based on its channel model [33], the channel in the k th subcarrier’s frequency region in OFDM is 
given by.

( ) ( )12
1

1

s
kL j f HT R K
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= ∑  .                                          (19)

Where sf  denotes the sampling rate and K is the number of OFDM subcarriers.

To obtain  Hk  the pilot signal k ux ， , is delivered by way of beamforming vectors T
T

1, 1k u
N u M×∈ …=f

，
，，  

period  MT  continuous time slots. Receiver adopts  MR  combination vector, R
R

1 1N
k v v M×∈ = …w ， ， ，，  to 

deal with each of the beamforming vectors. Then, the frequency guide signal matrix related to the k th subcarrier 
on the receiver’s baseband can be obtained.

H
k k k k k k= +Y W H F X N  .                                                            (20)

Where 1 Rk k k M= …  W w w， , ,,  are the combination matrix, 1 Tk kk M= …  F f f， , ,,  are the beamforming 

matrix. kX  is an T TM M×  diagonal matrix with its μ th elements of diagonal being ,xk µ  and H
k k k=N W N  rep-
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resents user-combined noise, while kN  is additive white Gaussian noise with  (0, 1) elements before com-
bining.

Fig. 3. SF-CNN channel estimation

6   Convolutional Neural Network-based Channel Estimation Method

6.1   Algorithm Description

Channel Pre-processing.  To continue with generality while assuming the worst-case scenario that Fk = F, Wk 

= W, and k P=X I , where P denotes transmitted power. The conduction frequency signal’s matrix, kY , be-

comes:

k k k
HP= +Y W H F N  .                                                            (21)

Fig. 3 illustrates the kY  through estimation (TE) module, which processes kY  and outputs a preliminary esti-

mate kH  using two matrices LG , RG .

L Rk k=R G Y G  .                                                                   (22)
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Then, the initially estimated channel matrices k0R  and k0 1+R  are concurrently fed into the SF-CNN.

SF-CNN Offline Training.  To the suggested SF-CNN, a training database made up of trN  samples is cre-

ated in the simulation environment based on a particular channel model, where ( iR , iH ) stands for the ith 

sample, iR  stands for input data, iH  stands for target data. 
0

i
k′

R , R T

0 1
N Ni

k′
×

+
∈R  are the tentatively estimated 

channel matrices at subcarriers 0  k′  and 0 1k′ + , corresponds to the three-dimensional matrix which makes up 
R T 2N N

i
× ×∈R  .
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R T 2N N
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××∈H 
 
is a 3D matrix consisting of 0

i

k

c

′H
, 0 R T1

i
k N N

c

′ + ×∈
H

 , 
0

i
k′

H , 
0 1

i

k′ +
H  are the value of the associat-

ed real channel estimate, and c > 0 is the resizing constant. Then iR  is delivered the SF-CNN to obtain the chan-

nel that approaches iH .
In order to create four 16×32 real-valued matrices for the millimeter-wave large-scale MIMO system, the SF-

CNN first estimates the complex channel matrices 
0

16 32  i
k′

×∈R  and 
0

16 32
1

i
k′

×
+
∈R  as the importation and 

splitting their real and virtual components. These four matrices are processed in the convolutional layer using 64 
3×3×4 convolutional filters and the activation function RELU to create 64 16×32 real-valued matrices. Each fea-
ture matrix is processed with zero-padding (ZP) to maintain its dimensionality after convolution. The subsequent 
addition of a batch normalized (BN) layer prevents gradient spread and overfitting. The feature matrix transmit-
ted from the preceding layer is used in each of the next eight convolution layers, which each employ 64 3×3×64 
convolutional filters to produce 64 16×32 real-valued feature matrices. These eight layers receive the activation 
function ReLU, and a BN layer comes after each layer. The 64 16×32 real-valued feature matrices are processed 
by four 3×3 ×64 convolutional filters on the output layer to produce the real and imaginary components of the 

0  k′ , 0 1k′ +  scaled channel matrices. The output layer maps the output to the range [-1, 1] using hyperbolic tan-
gent activation functions. The appropriate real and imaginary sections are scaled, and then the resulting 16×32 
complex estimated channel matrices are created.

The goal of SF-CNN off-line training is used to reduce the MSE loss function.

tr

0 0

2
2

Loss 2 1 1
1 1tr

1M ˆSE
N

i i
Fk q k q

i qN c ′ ′+ − + −
= =

= −∑∑ H H   .                                            (24)

Online Deployment.  After off-line training, the SF-CNN and the TE module will be positioned at the receiver 
to output the estimated channel matrix 

0 0 01 1, , ,k k k Q+ + −…Y Y Y . By processing the guide frequency matrix, in order 

to output the estimated channel matrix 
0 0 01 1, ,ˆ̂̂ ,k k k Q+ + −…H H H .

6.2   Optimized Convolutional Neural Network Structure Based on AVGWO.

Structure of Convolutional Neural Networks.  The typical framework of a CNN composed of convolutional 
layers, pooling layers, and fully connected layers. The convolutional layer is employed to extract local features, 
the pooling layer is utilized to minimize the dimensionality of the feature maps, and the fully connected layers 
is employed for tasks such as classification or regression. In this paper, we take CNN: convolutional layer (C1) 
- batch normalization layer-convolutional layers (C2) …convolutional layers (C10) as an example. The hyperpa-
rameters of the CNN, as presented in Table 4, have a straightforward effect on the network’s performance. In this 
paper, the activation function type for layer C1, the activation function type and number of convolution filters for 
C10 have been determined. The selection of these hyperparameters determines the structure of the CNN, which 
ultimately affects its ability to perform. Therefore, the choices made regarding these hyperparameters play a fun-
damental role in shaping the CNN’s architecture and performance.

Table 4. Hyperparameters in CNN

Symbols Hyperparameters
x1− x9 Number of convolution filters in C1-C9

x10− x19 Convolutional kernel size in C1-C10
x20− x27 Types of activation functions in C2-C9

x28 Batch size for training
x29 Learning rate of CNN
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Algorithmic Ideas.  The structure of CNN is very complex and its performance depends heavily on many hyper-
parameters. the hyperparameters of CNN determine its structure, and the optimization of CNN structure is essen-
tially the optimization of hyperparameters in CNN, and in turn, the optimization of hyperparameters can achieve 
the purpose of optimizing CNN. In this study, the primary aim is to reduce the minimum mean square error MSE 
of CNN, which can be expressed as a function of the variation of CNN hyperparameters.

Algorithm Steps and Flow Chart.  AVGWOCNN algorithm specific steps
Step1: Basic parameters setting, including population scale of AVGWO, maximum number of iterations and 

other parameters of AVGWO;
Step2: The hyperparameters that CNN needs to optimize are the grey wolf individuals of the AVGWO 

algorithm, initialize the grey wolf individual;
Step3: Use each grey wolf as a CNN structure, determine the CNN through training, use the test error of the 

CNN as the adaptation values for grey wolves, and determine the á wolves.
Step4: Upon attaining the maximum number of iterations, stop iteration and the position of á wolf is used as 

the optimal hyperparameter of the CNN, otherwise, continue to update the grey wolf position and return to Step3;
The flow graph of the AVGWOSF-CNN algorithm is shown in Fig. 4.

Fig. 4. Flow graph of AVGWOSF-CNN
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7   Simulation Results

The channel data is generated based on the Clustered Latency Line model with frequency of carrier wave cf =28 

GHz, percentage of sampling sf =100 MHz, main path number L = 3, and subcarrier number K = 64, according 
to the Third Generation Partnership Project (3GPP) TR 38.901 version 15 channel model [34].

For SF-CNN, the training set, validation set and test set incorporates 50,000, 5,000 and 8,000 samples, Adam 
is utilized as the optimizer, the number of training times is defined as 300, the learning rate is defined as 0.01 and 
the scaling constant c is defined as 2. In this paper, suggest a technique that combines modified grey wolf opti-
mizer with CNN to optimize the architecture of CNN without the need for manual parameter tuning. By automat-
ing the procedure for searching optimal parameters, aim to reduce the amount of human trial and error involved 
in CNN optimization, and improve the performance of CNN. Specifically, Use the modified Grey Wolf optimizer 
to determine which is finest values of the hyperparameters in CNN, such as the number of filters, filter size.

To test the channel estimation capabilities, the normalized MSE (NMSE) is used, which is stated as:

{ }2 2ˆNMSE /F F= −H H H H     .                                                 (25)

H is the genuine channel, Ĥ  is the predicted channel.
In Fig. 5, a comparison is made between single-carrier and multi-carrier channel estimation methods based on 

SF-CNN, which verifies that frequency correlation can improve channel accuracy.

Fig. 5. Comparison of single-carrier and two-carrier channel estimation methods based on SF-CNN
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Fig. 6. NMSE and SNR for channel estimation based on SF-CNN, GWOSF-CNN and AVGWOSF-CNN

Fig. 7. NMSE and SNR for channel estimation based on SF-CNN, GWOSF-CNN and AVGWOSF-CNN
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Fig. 6 and Fig. 7 shows the relationship between signal-to-noise ratio (SNR) and the channel estimation per-
formance of the proposed SF-CNN-based channel estimation and the grey wolf algorithm optimized CNN-based 
channel estimation on a single subcarrier in the urban micro (UMi) non-line-of-sight (NLOS) scenario. Through 
offline training, the results show that under the same signal-to-noise ratio, the traditional grey wolf optimized 
CNN algorithm is superior to the SF-CNN algorithm in channel estimation, and using the AVGWO algorithm to 
optimize the CNN further improves the performance. Using the improved grey wolf algorithm to optimize the 
CNN not only eliminates the need for trial-and-error hyperparameter tuning, but also enhances the learning abili-
ty of the CNN, thus improving the accuracy of channel prediction.

8   Conclusion

In this paper, we propose a new improved gray wolf algorithm, AVGWO, which combines three different strate-
gies, the search mechanism based on the African vulture algorithm, the search mechanism based on the bootstrap 
strategy, and the adaptive weights. The global search capability and local search capability of the algorithm are 
balanced while maintaining a high convergence speed. The performance of AVGWO is tested in 23 benchmark 
test functions and compared with the GWO algorithm and other improvements and other metaheuristics. Finally, 
in the massive MIMO-OFDM system, AVGWO and GWO are used to optimize SF-CNN for the proposed chan-
nel estimation based on convolutional neural network, the results show that both GWO and AVGWO improve 
the learning ability of CNN, AVGWO further improves the accuracy of channel estimation.
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