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Abstract. To accurately and efficiently capture the topological and attribute information of nodes and apply 
them to the link prediction task, this paper proposes a Dual Channel Graph Convolution Link Prediction (DC-
GCN). DC-GCN constructs a dual channel through the graph convolution network. DC-GCN can learn both 
topological embeddings and attribute embeddings of nodes; it introduces an attention mechanism to learn 
the weights of each embedding adaptively and then performs weighted fusion to obtain the final embedding 
representation of nodes. Finally, the Hadamard distance of nodes is used to construct the link representation 
between nodes, and the probability of linking between nodes is obtained by training a logistic regression func-
tion. By comparing and analyzing many different types of link prediction algorithms, the results show that this 
algorithm has greater advantages in both AUC and Precision evaluation metrics, so DC-GCN can effectively 
combine node attributes and structural information of the network to improve the accuracy of the link predic-
tion algorithm.

Keywords: link prediction, graph embedding, graph convolutional network, attention mechanism, topological 
embedding, attribute embedding

1   Introduction

In network theory research, a complex network, as an abstract model of the real world, is a network composed 
of many nodes and complex relationships among nodes, and the nodes in the network represent individuals in 
the real world, and the connected edges in the network represent interactions among individuals. In recent years, 
link prediction (link prediction) [1], as one of the important hotspots in complex network research, has attracted 
the attention of scholars to explore and has shown great application value in recommendation systems, network 
reconstruction, and network evolution model evaluation.

Link prediction refers to inferring the possible (invisible) links in the network or the possible future links 
formed in the network based on the known information of network nodes and network topology information, i.e., 
the restoration of missing information of the network and the prediction of future information of the network. 
Nowadays link prediction is widely used in real life, such as active ingredient and mechanism of action predic-
tion in the biological network [2], protein function prediction in protein networks [3], friend recommendation in 
the social network [4], etc.

Because of the rapid development of computer technology, deep learning has become a hot topic in the field 
of computer science, image processing, link prediction, and other fields, so deep learning has gradually become a 
major research hotspot in the field of link prediction. Among them, graph embedding [5] can convert graph data 
into a dense vector representation in low-dimensional space, while ensuring that certain characteristics of graph 
data still correspond in vector space, and in addition, the representation of graph data can contain a large amount 
of semantic information, thus providing better input characteristics for link prediction tasks. Most of the more 
popular graph embedding-based link prediction methods currently consider only the topological information of 
nodes, while ignoring the rich attribute information of nodes. In a network graph, topological information explic-
itly describes the pairwise and sequential relationships between nodes, while node attributes provide more fine-
grained features of the nodes themselves, and both topology and node attributes are key to understanding the 
network formalism.
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Therefore, this paper proposes a GCN two-channel graph-embedded link prediction method (DC-GCN) that 
adaptively fuses network topology information and attribute information, and the contribution of this method is 
described as follows.

1. A network feature map generation method is proposed. Firstly, the attribute similarity of any two nodes is 
calculated, and the first k nodes with high attribute similarity of each node are selected and set as having 
edges, i.e., the attribute similarity of nodes is treated as having connected edges between nodes, and the 
k-nearest neighbor matrix of nodes is constructed to generate the network feature map, i.e., the attribute 
information of nodes is used for GCN convolution in the form of the network feature map.

2. A two-channel method for obtaining network embeddings and attribute embeddings is proposed. A 
two-channel model is constructed using GCN to obtain the topological embedding and attribute embed-
ding of nodes in complex networks separately. It can perform convolutional operations on the network 
topology map and the feature map separately on the GCN dual channel, i.e., to maximize the information 
retention of complex networks and to improve the performance of prediction.

3. A method is proposed for adaptive weighting and fusing topological embeddings and attribute embed-
dings using an attention mechanism. The optimal weights can be obtained based on the training data with-
out manually assigning the relevant weights, and the information of the nodes can be fully fused.

4. Validating the effectiveness of the method. Extensive experiments on three benchmark datasets, Ciseteer, 
Cora, and DBLP (Subgraph), show that DC-GCN has a large improvement in both AUC and Precision 
compared with a series of more representative link prediction methods, and can well extract the most rel-
evant information from node attributes and topology to improve the accuracy of the link prediction task.

2   Introduction of Related Knowledge

2.1   Figure Embedding

Graph embedding (graph representation learning) [5] Iterative learning via neural networks provides an efficient 
way to represent nodes as low dimensional embeddings to solve complex network analysis and research prob-
lems. Specifically, based on the sparsity and high dimensionality of the network, graph embedding algorithms 
can transform the graph structure into low-dimensional vectors, which can preserve the data information of the 
initial graph and increase the accuracy of the link prediction task by using the embedding results for other tasks, 
such as link prediction and image classification [6], network recommendation [7], etc.

2.2   Graph Convolutional Network (GCN)

Bruna et al. [8] first proposed Graph Convolution Networks (GCN) in 2013 based on Spectral Graph Theory 
(SGT). GCN is the aggregation of neighborhood information for computation, which has the power to model 
dependencies between graph data and to feature extraction and representation of graph data. Previous CNNs 
(Convolution Neural Networks) deal with Euclidean structured data, which consists of pixel points, while GCNs 
deal with non-Euclidean structured data, which consists of nodes and edges, such as citation networks, social 
networks, etc. A typical GCN [10] and its variants [24-30] usually use a matrix form to iteratively calculate the 
features of each node, and then perform convolution operations by layer propagation, and finally, by updating the 
node features, the node embedding can be applied to data mining fields, such as link prediction.

2.3   Attention Mechanism

Attention mechanism [9] is widely applied in most fields of computers, including machine translation, natural 
language processing, image recognition, and other fields. For example, in the field of machine translation, schol-
ars have found that context words have different influences on the target words, and introducing Attention Model 
(AM) can get information about the weights of different words relative to the target words to increase the accura-
cy of the translation.

With the introduction of graph neural networks, many scholars have combined attention mechanisms with 
graph neural networks and applied them to various domains [11], all of which have performed well relative to 
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traditional algorithms. The attention mechanism allows a neural network to center at a subset of features of its 
input, i.e., to focus on a specific input. There are various forms of combining attention mechanisms and graph 
neural networks, which include attention weight assignment to different neighbors to complete feature informa-
tion aggregation, weighted aggregation of multiple models based on attention weights, using attention weights to 
guide random wandering, etc.

2.4   Introduction to Classical Methods for Link Prediction

Link prediction Method Based on the Similarity Index.  Traditional link prediction methods usually use the 
similarity between nodes as a metric to measure the likelihood of contiguous edges between node pairs <Vx, Vy> 
by measuring the similarity score S<Vx, Vy>, and the higher the similarity score, the higher the likelihood of 
contiguous edges. The related formula is described as follows.

(1) Method based on the local similarity index
CN (common neighbors) [12]: A first-order heuristic that calculates only the first-hop neighbor information of 

two target nodes. The number of common neighbors of the target nodes is calculated to determine the probability 
of generating concatenated edges, i.e., the more the number of common neighbors between the target nodes, the 
higher the possibility of concatenated edges exists.

AA (Adamic-Adar) [13]: AA belongs to the second-order heuristic, which calculates the information about the 
common neighbors of two target nodes at most two hops. In this algorithm, the smaller the degree the greater the 
contribution of the common neighbor nodes. For example, in a social network, two people who jointly like the 
same cold novel are more likely to create a connection between them than two people who jointly follow a more 
popular novel. Therefore, a weight value can be assigned to each node based on the degree of the common neigh-
bor nodes.

(2) Method based on the path similarity index
LP (Local Path) [14]: Similar to the local similarity index, and based on this optimization is done, considering 

the second-order neighbors and at the same time considering the influence of the third-order neighbors on the tar-
get node, and controlling the third-order path by adding an adjustable parameter α. 

Katz [15]: By calculating all paths between two nodes, weights are assigned to paths between two nodes ac-
cording to the principle that the shorter the path, the greater the weight. Katz metric uses a weight decay factor β 
to calculate the similarity between two nodes.

(3) Method based on random wandering similarity
LRW (Local Random Walk) [16]: Local Random Walk indicator, which can limit the length of the motion path 

and reduce the amount of computation, and is more suitable for large networks with sparse nodes.

Link Prediction Method Based on Graph Embedding.  In addition to link prediction research using similarity, 
methods of network representation have recently been increasingly applied to link prediction research, bringing a 
breakthrough in the development of link prediction [17]. Link prediction methods based on network representa-
tions can be divided into 3 categories: matrix decomposition-based methods, random wander-based methods, and 
deep learning-based methods.

(1) Matrix decomposition-based methods
At the early stage of research, matrix decomposition-based methods are popular studies in graph embedding. 

These algorithms can take into account all information of the network graph, decompose the information of the 
network graph into the context matrix and the embedding vector matrix, and then train accordingly to obtain the 
final embedding vector through the loss function. The matrix decomposition-based network embedding technique 
is mainly used to reduce matrix dimensions by linear and nonlinear transformations.

SVD (Singular Value Decomposition) [17] is a more efficient matrix decomposition method in machine learn-
ing. First, a transfer matrix of order 1-k is constructed, and then the singular value matrix decomposition is per-
formed on it separately. This method can decompose a matrix of arbitrary form into the form of the orthogonal 
matrix, diagonal matrix, and product of orthogonal matrices, and finally, splice the obtained low-dimensional 
embedding vectors of multiple nodes to derive the final embedding vectors of nodes. However, the application of 
SVD makes the computational complexity extremely high, and this method cannot be applied to large-scale net-
works.

SPC [18] combines spectral clustering with unsupervised spectral clustering for similarity transformation, so 
that prior information can be extended to space level constraints. Research has found that these spatial level con-
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strained (undirected) graphs are more meaningful and have better clustering results.
(2) Method based on random wandering
The methods based on the random walk utilizes a sequence of node random walks to calculate the similarity 

between nodes, if the vectorization between nodes is higher, the probability of generating edges between them is 
higher. Among them, DeepWalk and Node2vec are the classical algorithms of random walk algorithms.

DeepWalk [19] is a new social network embedding algorithm that uses the neural language model Skip-Gram 
to implement graph embedding, treating graph embedding as a natural language problem. The random wandering 
paths of nodes are obtained by mimicking the process of text generation to obtain a sequence of nodes, where the 
paths are equivalent to sentences in the text and the nodes are equivalent to words in the text. The objective func-
tion of DeepWalk is as follows:
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The essence of Node2vec [20] is to embed the text, which is based on the DeepWalk algorithm and changes 
the way the random walk sequence is generated, in which the nodes are traversed using random walks with un-
equal probability (using a combination of depth-first and breadth-first algorithms). Its objective function is as 
follows:
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V is the set of nodes and f is a mapping function.
(3) Deep learning-based approach
Rapid development of deep learning, and as a result, researchers have designed various deep learning-based 

methods for embedding graph neural network nodes.
LINE (Large-scale Network Information Embedding) [21] defines two loss functions O1 and O2, which con-

tain first-order proximity relations and second-order proximity relations, based on which the first-order and sec-
ond-order objectives are then optimized. Although this method has a high learning efficiency, it does not show 
good performance when dealing with remote nodes. Its objective function is as follows:
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LINE is a shallow model that often does not capture the nonlinear network structure well, giving rise to both 
the SDNE algorithms. SDNE is the most classical algorithm for deep self-encoder, which is widely used to 
downscale nonlinear data and learn the information of nonlinear data. SDNE algorithm takes the adjacency ma-
trix of the network as input and learns the node information of each row and each column, where the algorithm 
preserves the nodes’ first-order information by Laplace matrix and the nodes’ second-order information by deep 
self-encoder, and finally outputs the nodes’ embedding vector.
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In addition to these methods of deep self-encoders, the remaining methods are based on graph neural net-
works, which are a combination of encoders and decoders. This type of method mainly aggregates the informa-
tion of the node’s neighbors and then updates the information of the current node, which results in the embedding 
vector representation of the node through multiple iterations. One of the most typical algorithms is the graph 
convolutional network GCN, which functions similarly to other convolutional neural networks as a feature ex-
tractor, but targets the graph data [22]. In general, a graph structure is very irregular, infinite-dimensional data, 
and therefore does not have translation invariance. The surrounding domain of each node in the graph structure 
may be different, and such a data structure leads to the uselessness of traditional CNN and RNN. GCN proposes 
a new method to extract features from graph data in a subtle way and use these features for downstream tasks, 
which can be used for a wide range of purposes [23].

Although there are currently many network-based link prediction algorithms, most of them only utilize the 
structural characteristics of the network itself and ignore the rich attribute information contained in the network. 
Due to the crucial role of link structural features in link prediction, utilizing attribute features can effectively 
improve link prediction accuracy. Therefore, we propose a GCN dual channel graph embedding method for link 
prediction.

3   DC-GCN Model

3.1   Problem Description

Define a complex network as G = (V, E), where V denotes the set of nodes in the network and E denotes the set 
of connected edges between nodes. A ∈  Rn×n denotes the adjacency matrix of nodes in the network, and Aij = 1 
when there is a link between node i and node j, otherwise Aij = 0. X ∈  Rn×d is the node feature matrix and d is the 
dimension of the node features. When a network has N nodes, then the network has at most N(N-1)/2 links, de-
noted as the full set U.

For any network, a link prediction method is designed to compute a similarity score value Sij for any node 
pair (i, j)∈U-E, and to rank the node pairs according to this score value from the largest to the smallest, then, the 
higher the ranked node pair is the more likely to have a connection relationship between them. In the static link 
prediction shown in Fig. 1, the first half of the molecular map represents the sample network used for the study, 
which is also called the observation network, and the second half of the molecular map is derived by partitioning 
the data set, which is called the test network. Where the solid line represents the training set and the dashed line 
represents the test set, i.e., the prediction of whether unknown node pairs establish links based on the existing 
linking relationships between nodes.
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Fig. 1. Link prediction

3.2   DC-GCN Basic Ideas

To more comprehensively mine the network information, yet significantly enhance the ability to fuse topology 
and node attributes, a two-channel graph convolutional link prediction method (DC-GCN) is proposed in this pa-
per. The model diagram of DC-GCN is shown in Fig. 2.
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Fig. 2. GCN flow chart

DC-GCN first performs dataset processing to partition the information network graph into topological and 
attribute graphs. Then, using the feature that GCN can extract graph data to generate embedding, the topological 
embedding and attribute embedding of nodes are obtained by double-channel convolutional operations on topo-
logical and attribute graphs of nodes respectively. In the topological space, GCN is a multilayer graph convolu-
tional neural network, and the input of each layer of GCN is the adjacency matrix A and the feature matrix X of 
nodes, and each convolutional layer is responsible for processing first-order neighborhood information, and the 
superposition of multiple convolutional layers can achieve the transmission of information from multiple neigh-
boring regions, obtaining information from the neighbor summary of each node; similarly, the same is true in the 
feature space, except that the input of the feature space is the k-nearest neighbor matrix Af and the feature matrix 
X of the node. After that, the attention mechanism model is introduced, and the attribute embedding and topolog-
ical embedding of the nodes are weighted and fused to finally obtain the relational features of the nodes for link 
prediction. DC- GCN solves the problem that traditional GCN can only obtain information from node features or 
topology, but cannot fuse them adaptively, and improves the accuracy of link prediction.

3.3   DC-GCN Algorithm

Embedding Acquisition.  DC-GCN constructs a dual channel of GCN based on topological space and feature 
space, where topological space convolution is used to learn the topological embedding of nodes HF, and feature 
space convolution is used to learn the attribute embedding of nodes HT.
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(1) Topology embedding acquisition
In the topological space, the original input graph G=(A, X) is fed into the GCN for convolution operation, and 

the output of the lth layer is shown in Equation (7).

1 1
12 2ReLU( ),ll l

T WH HD DA
− − −=  

                                                        (7)

where ReLU is the activation function, the initial H0 = X, the D  is the diagonal matrix of A, also called the de-
gree matrix, which represents the number of neighbors of each node, and Wl denotes the weight matrix of the lth 
layer in the GCN convolutional layer. Since the adjacency matrix A only obtains information about the neighbors 
of a node and ignores information about the node itself, the value of the diagonal in the adjacency matrix A is set 
to 1 to increase the self-connection relationship of each node, i.e. A  = A+I, I is the unit matrix. The aggrega-
tion operation and node feature update are the core operations of the graph convolutional network, as shown in 
Equation (7), where the characteristics of nodes are updated by continuously exchanging information about their 
neighbors until a stable equilibrium is reached, at which time the feature vectors of all nodes contain information 
about their neighbor nodes, which can then be used to obtain the final layer of output embedding, denoted as HT.

(2) Attribute embedding acquisition
The input of GCN is generally the starting feature vector X and the adjacency matrix A that represents the 

connectivity between nodes. To make full use of the information in the feature space, first calculate the attribute 
similarity value Sij for node pair (i,j), select the nodes with the top k most similar attributes to node i and set them 
as connected edges, generate a new adjacency matrix Af by setting k nearest neighbor edges for each node, and 
obtain the k nearest neighbor graph Gf =(Af, X) as the feature structure graph. In the topological space, the adja-
cency matrix A in the original graph G = (A, X) considers all the neighbors of the node and focuses on learning 
the topological information of the node; while in the feature space, the k-nearest neighbor matrix Af in the feature 
structure graph Gf = (Af, X) focuses only on the first k nodes with similar attributes of the node and focuses on 
learning the attribute information of the node.

In the feature space, the attribute similarity matrix of the n nodes is first calculated using the cosine similarity 
formula as shown in Equation (8).
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where xi , xj ∈ R1×d are the i-th and j-th rows of the feature matrix X, representing the feature matrices of node i 
and node j.

Then, the first K nodes with similar attributes of each node are selected to set the edges according to the sim-
ilarity matrix S ∈  Rn×n, for example, if the first three nodes with high attribute values in node 1 are node 3, node 
5, and node 6, then set the value between node 1 and the other three nodes to 1, and set the value between node 
1 and the other nodes to 0. The same applies to other nodes. Finally, the modified N × N dimensional adjacency 
matrix Af is obtained, and the structural characteristic graph is Gf = (Af, X).

As shown in Fig. 3, the similarity values of node V3 and other nodes SV3Vi , and SV3Vi are calculated separately, 
and when k=2, the two nodes V2 and V8 with the largest similarity values to V3 are selected as connected edges. 
Similarly, when k=m, the m nodes with the greatest similarity to V3 are selected and set as connected edges, i.e., 
the k-nearest neighbor graph of the nodes is obtained.
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Finally, the feature input map Gf  = (Af, X) is input to the GCN for convolution operation, and the output of the 
lth layer is shown in Equation (9).

1 1
12 2ReLU( ),ll l

T f ff WH HD DA
− − −=  


                                                      (9)

where the initial 0
TH = X. Specifically, there is Af =Af +If, If is the unit matrix, and the last level of output embed-

ding is denoted as HF.
Since then, the topological embedding HT and the attribute embedding HF of the node are obtained.

Embedding Fusion.  The attention mechanism allows neural networks to focus on a subset of their input fea-
tures, now in this paper, there are two specific embeddings HT and HF that use the attention mechanism αtt (HT, HF 
) to learn their corresponding importance (αt, αf ) as shown in equation (10).

( , ) ( , ).t t tt T FH Hα α α=                                                               (10)

Where αt, αf ∈ Rn×1, represent the attention values of the topological embedding HT and feature embedding HF 
of the node, respectively.

For node i, it’s embedding in HT
1i d

TH R ×∈ , representing row i of HT. This embedding uses a nonlinear trans-
formation followed by a shared attention vector q ∈ Rh’×1 to obtain the attention value w, as shown in Equation 
(11).
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where W ∈
'h hR ×  is the weight matrix and b ∈ Rh’×1 is the bias vector. Similarly, the attention values of node i 

in the embedding matrix HF can be obtained separately i
Fw .

The attention values i
Tw , i

Fw  are normalized using the softmax function to obtain the final weights as shown 
in Equation (12).
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where the larger α is, the more important the corresponding embedding is. Similarly, )softmax (i i
F Fwα =  is ob-

tained.
For each of the n nodes, their weights are learned, [ ]αα i

Tt =  [ ]αα i
Ff = ∈ Rn 1×  , and then the weight 

information of the n nodes is aggregated within the same matrix using the diag function )diag(αα tT =

)diag(αα fF = .
Finally, the topology embedding and attribute embedding are combined according to the weight coefficient to 

obtain the final embedding H, as shown in Equation (13).

.T FT FH H Hα α= ⋅ + ⋅                                                                (13)

After learning of the attention model, the final embedding H of the nodes, i.e., the relational feature embed-
ding of all target type nodes, is obtained.

Constructing Edge Vectors for Link Prediction.  After learning the relational embedding of all nodes, any two 
nodes i and j are randomly selected for link prediction by constructing connected edge representations. Their 
Hadamard distances are first computed as their edge vectors, and then the probability of edge existence is evalu-
ated by training a logistic regression function. The edge vectors are defined as shown in equation (14).

.ij i je H H=                                                      (14)

Assume that the probability of having a contiguous edge between node i and node j is Pij, calculated as shown 
in Equation (15).

1 ,
1 exp( )ij T

ijeP φ
=

+ −
                                               (15)

where φ is a parameter vector with the same dimension as H. T
ije ϕ  is the dot product between the vector T

ije  and 

the vector φ.
After obtaining the probability of connecting edges between two nodes, its loss is calculated by a logistic re-

gression function with the formula shown in (16).

1
, 1 log (1 )(1 )

N

ij ijij ijL y yP PN
= − + − −∑                                                   (16)

where yij indicates whether there is a connection between node i and node j. If there is, yij = 1, otherwise yij = 0. N 
is the total number of samples, and 1/N indicates that the mean value is taken.

4   Experiments and Analysis of Results

In this paper, three datasets with different node information are selected for extensive experiments, different em-
bedding representations of nodes are constructed by the DC-GCN model for two-channel learning, and weighted 
learning of target type nodes is performed by using GCN combined with attention mechanism, to capture the 
feature vector of the relationship between them, and finally, link prediction is completed by using logistic regres-
sion function. To prove the performance of the model, DC-GCN compares with the similarity-based traditional 
link prediction methods LP, Katz, LRW, and the neural network-based link prediction methods Node2vec, LINE, 
GCN, KNN-GCN to prove the superiority of DC-GCN.
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4.1   Data Set

To verify the validity of DC-GCN, experiments were conducted on three real data sets in this paper.
Citeseer [25]: This is a paper citation network. It consists of 3327 nodes and 4732 edges, where nodes and 

edges represent publication and citation relationships, and node attributes represent keywords in the paper.
Cora [26]: This is the well-known citation network. Represent machine learning papers as nodes, with citation 

relationships between papers as edges, and keywords in the paper representing node attributes.
DBLP (Subgraph) [27]: It represent machine learning papers as nodes, with citation relationships between pa-

pers as edges, and keywords in the paper representing node attributes.
The parameters of the three data sets are shown in Table 1.

Table 1. Parameters of networks datasets

Dataset Number of nodes Number of consecutive sides Number of characteristics
Citeseer 3327 4732 3703

Cora 2708 5249 1433
DBLP (Subgraph) 18448 45611 5959

4.2   Evaluation Indicators

The AUC metric is a general link prediction method that provides a comprehensive evaluation of the accuracy of 
link prediction, then the formula for calculating AUC is defined as shown in Equation (17).

n 0.5AUC .n
n

′ ′′+
=                                                  (17)

The Precision index does not evaluate the accuracy of the algorithm from a macroscopic point of view like 
AUC, but only considers whether the top L edges are predicted accurately. Training the link prediction algorithm 
to capture the similarity values between two nodes, remove the edges in the training set, rank only the similarity 
values of the edges in the test set and the set of nonexistent edges, and take the top L (here L is 100) after the 
ranking. Assuming that N out of L belongs to the test set, the Precision algorithm is derived as shown in Equation 
(18).

Precision ,N
L

=                                                    (18)

where N denotes the number of test sets in L that belong to the test set.

4.3   Experimental Results and Analysis

This article randomly divides article randomly divides into a training set and a test set in the ratio of 9:1, and 
then 100 independent experiments are conducted, and for each independent experiment, the AUC and Precision 
values are obtained, and finally, all the obtained AUC and Precision values are averaged as the final experimental 
results. For each independent experiment, 10,000 random samples are taken to compare the scores of predicted 
edges and nonexistent edges to calculate AUC and Precision.

Parameter Analysis.  In this model, two-layer GCNs with identical hidden layer dimensions and identical output 
dimensions are trained simultaneously, with a hidden layer dimension of 512 and an output dimension of 128. 
For the DC-GCN model, this paper sets the random seed to 123, the learning rate to 0.005, the regularization 
parameter to 0.001, the dropout to 0.5, and 100 iterations. Under the same environment, 5 experiments were con-
ducted on all studies, and the experimental results were analyzed on an average basis. In this paper, we evaluated 
this model using both AUC and Precision methods. The parameters in the DC-GCN model are analyzed below, 
including k values, epoch values, and parameters αt and αf.
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(1) k-epoch analysis
To check the number of iterations (epoch) of the experiment and the effect of different k values in the k-near-

est neighbor graph on the AUC, this paper investigates the effect of k chosen from 2 to 9, respectively, with 100 
iterations, on the AUC values on the three datasets. As shown in Fig. 4, in general, regardless of k chosen any 
one of 2-9, for the three datasets of Citesser, Cora, and DBLP, the value of AUC changes roughly as the number 
of iterations increases and then levels off or decreases slightly. This is because the number of epochs is different 
for different models and different datasets for training. In this paper, we first use the training set to train the mod-
el and then evaluate the performance of the model on the validation set. As the epoch increases, the effectiveness 
of the model will be better improved, but if the number of trainings is too large, it will cause overfitting of the 
model training data and the effect of the validation set tends to be flat or decreasing. Ideally, the inflection points 
at which the model changes from good to bad needs to be found. From Fig. 4, it is observed that most of the folds 
reach the maximum value of AUC at the number of iterations equal to 90. Although there are a few cases where 
the value of AUC does not result in the maximum at the number of iterations of 90, this experiment selects the 
number of iterations of 90 by most principles and considers that the results reach the optimum at this time.

To examine the effect of the selection of row k values in the kNN graph on the performance of DC-GCN, this 
paper investigates the performance of DC-GCN with k values in the range of 2-9. As shown in Fig. 5, for three 
datasets with 90 iterations, the accuracy first increases and then starts to decrease as the k value increases. This 
may be because if the graph becomes denser, the features are more likely to be smoothed, and the larger k is, the 
more noisy edges may be introduced. When the number of iterations is 90, this paper finds that the AUC value 
peaks at k=5 on the dataset Citeseer by comparing and analyzing the change of AUC when different k values are 
chosen for the Citeseer, Cora and DBLP datasets, respectively. Therefore, for the Citeseer dataset, this paper se-
lects epoch=90 and k=5 and considers that DC-GCN has the best prediction effect on the Citeseer dataset at this 
time. Similarly, for the Cora dataset, epoch=90 and k=5 are also chosen, while for the DBLP dataset, epoch=90 
and k=4 are chosen. In this paper, the optimal number of iterations is determined by comparing the changes of 
AUC values, the optimal k value is obtained by the control variables method, and finally, the best model is used 
for experiments on the test set.

(2) Note the value distribution
In this paper, the proportion of topological and attribute information of the node that plays a role in the ex-

perimental results are measured by the attention values, which are represented by the parameters αt, αf where αt 
denotes the attention value of topological information of the node and αf denotes the attention value of attribute 
information of the node. When the number of iterations is 90 and k is chosen as 5 for the Citeseer and Cora data-
sets and 4 for DBLP, the attention mechanism adaptively generates the optimal attention values, i.e., the weights 
of attributes and topology, by learning. In Fig. 6, it can be seen that for the dataset Citesser, the attention value 
accounted for by the topological information of the nodes is 0.61 and the attention value of the attribute infor-
mation is 0.39, which means that the topological information of the nodes plays a greater role than the attribute 
information of the nodes on the Citeseer dataset. Of course, both the topological information of nodes and the 
attribute information of nodes have a corresponding role in the results and cannot be ignored. Similarly, in the 
data set Cora, the attention values of node topology information and attribute information are 0.78 and 0.22, re-
spectively, and the topology information plays a greater role. In contrast, for the DBLP dataset, the attention val-
ues of these two are 0.47 and 0.53, respectively, and the attention value of attribute information is slightly higher. 
Therefore, it can be inferred that in the link prediction task, topological information in both datasets Cora and 
Citeseer contribute more to the analysis and study of the network, while in the dataset DBLP, the contribution of 
attribute information is greater than that of topological information.

To verify the inference of this paper, the k-nearest neighbor graph Gf = (Af, X) generated from the node attri-
bute matrix X is used as the input graph of GCN in Table 2 instead of the traditional network graph and repre-
sented as KNN-GCN, when KNN-GCN performs link prediction based on the node attribute information only. 
It can be seen that GCN outperforms KNN-GCN on the datasets Cora and Citeseer, and the attention values of 
topological embedding in Fig. 6 are also greater than those of attribute embedding. On the contrary, for DBLP it 
can be found that GCN outperforms KNN-GCN and the attention value of attribute embedding is also larger than 
that of topological embedding. In summary, the above inference is proven to be correct.
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Experimental Results.  This paper uses two metrics, AUC and Precision, to measure the effectiveness of DC-
GCN, and demonstrate the superiority of the proposed DC-GCN method by comparing it with the similari-
ty-based traditional link prediction methods LP, Katz, LRW, and the graph embedding-based link prediction 
methods Node2vec, LINE, GCN, KNN-GCN, etc. Their comparison results are shown in Table 2 and Table 3.

The model DC-GCN proposed in this paper experimented on three real datasets, and the AUC values of DC-
GCN reached over 89% on all three datasets, which is a large improvement compared with baseline LP, Katz, 
LRW, Node2vec, LINE, GCN, and KNN-GCN, indicating that DC-GCN can effectively predict the links in in-
formation networks. As shown in Table 2.

Table 2. AUC values of each method under different data sets

   Citeseer    Cora    DBLP
PA 0.7153 0.6338 0.7312

Katz 0.7861 0.8821 0.6174
LRW 0.8024 0.8195 0.8744

Node2vec 0.8391 0.7493 0.8013
LINE 0.7786 0.7591 0.8846
GCN 0.8733 0.9231 0.8379

KNN-GCN 0.8500 0.8974 0.8863
DC-GCN 0.8912 0.9307 0.9031

For Citeseer, the paper’s cited network, PA performs relatively the worst among the similarity-based tradition-
al link prediction methods, with an AUC value of only 0.7153, which is because the number of Citeseer nodes is 
large and the number of connected edges is small, and PA only considers the degree of nodes, so it is not effec-
tive; Katz is suitable for small networks, so it achieves better results among the traditional algorithms; LRW algo-
rithm is more suitable for large networks with sparse nodes, so the AUC values on the Citeseer dataset are lower 
than those on the Cora dataset, and the AUC values on both datasets are average because both datasets are small. 
The neural network-based link prediction method Node2Vec improves the generation of random wandering, so 
that the generated random wandering can reflect the characteristics of both depth-first and breadth-first sampling, 
thus increasing the accuracy of embedding and improving the effect of network embedding, thus achieving a 
good score of 0.8391; LINE is more suitable for large-scale networks, and the accuracy on the Citeseer and Cora 
datasets The accuracy on the Citeseer and Cora datasets is somewhat lower compared to that on the DBLP data-
set; the link prediction methods of GCN and KNN-GCN are more effective, with AUC values above 0.85, but the 
AUC value of GCN is 2.33% higher than that of KNN-GCN because the topological information is more valu-
able than the attribute information in the link prediction task on the Citeseer dataset. The method in this paper 
integrates the topological and attribute information of nodes and improves the AUC metric by 1.79% over GCN, 
which is the best performer in the traditional method.

For Cora, a paper citation network with fewer node types and edge types, the PA method considering node de-
grees performs worse than on the Citeseer dataset, with an AUC value of only 0.6338; the Cora dataset has fewer 
nodes than the Citeseer dataset, but more connected edges than the Citeseer dataset and Katz considers all paths 
between nodes. Therefore, the results are better on the Cora dataset than on the Citeseer dataset. The best perfor-
mance among the traditional methods is the neural network-based link prediction method GCN. Similar to the 
Citeseer data and the Cora data set, the topological information is more valuable than the attribute information in 
the link prediction task, so the AUC value of GCN is higher than that of KNN-GCN. And the proposed method 
in this paper even works better than GCN with 0.76 improvements in the AUC metric.

Since the number of connected edges and nodes of the bibliographic information network DBLP is larger, the 
network size becomes larger and the PA effect decreases compared to the Citeseer and Cora datasets, while Katz, 
LRW, and LINE effects all improve. Among the traditional methods, the Katz algorithm, which considers global 
paths and uses the entire topological information of the network to calculate them, is the least effective for large-
scale networks, with an AUC value of only 0.6174. In comparison, KNN-GCN, a neural network-based link pre-
diction method, makes the best accuracy performance among the traditional methods due to the high number of 
features in the DBLP dataset. However, DC-GCN considers both the topological information of the network and 
the attribute information of the nodes through the two-channel network, and there is a 1.68% improvement com-
pared with KNN-GCN, which proves that the DC-GCN algorithm can get better prediction results by considering 



72

Research on Link Prediction Method Based on Information Fusion Graph Embedding

both the topological information of the network and the attribute information of the nodes.
Although the AUC value is the most important metric to evaluate the link prediction performance, the 

Precision value plays an important role when the AUC values do not differ much, and a higher Precision value 
indicates a higher accuracy of the algorithm. Among the baseline PA, Katz, LRW, Node2vec, LINE, GCN, and 
KNN-GCN, the GCN method has the highest Precision values of 0.81, 0.71, and 0.71 on the three datasets, re-
spectively, while the DC-GCN has Precision values of 0.84, 0.74, and 0.87, respectively, which are higher than 
the comparison methods. The best-performing GCN method improved by 3%, 3%, and 7%, respectively, proving 
that the DC-GCN method is more stable with improved performance. The specific values are shown in Table 3.

Table 3. Precision values of various methods under different data sets

  Citeseer   Cora   DBLP
PA 0.67 0.58 0.58

Katz 0.75 0.62 0.62
LRW 0.76 0.66 0.66

Node2vec 0.70 0.65 0.73
LINE 0.69 0.55 0.68
GCN 0.81 0.71 0.71

KNN-GCN 0.60 0.53 0.57
DC-GCN 0.84 0.74 0.87

By comparing with the traditional GCN and KNN-GCN, it can be seen that there are indeed structural differ-
ences between the topological and feature maps, and neither the link prediction on the topological or attribute 
maps alone can yield satisfactory results. In comparison, the DC-GCN proposed in this paper has a large im-
provement in both AUC and Precision, which further confirms the necessity of using GCN to fuse topological 
and attribute information.

5   Conclusion

In this paper, we introduce the idea of the k-nearest neighbor graph, and consider the first k nodes with similar 
attributes to nodes as having connected edges between them to construct the feature graph of nodes; use GCN to 
construct dual channels to obtain topological embedding and attribute embedding of nodes; combine the atten-
tion mechanism to complete the adaptive fusion of topological embedding and attribute embedding; calculate the 
Hadamard distance between nodes to represent the edge vector between nodes, and train the logistic regression 
function to The link prediction is performed by training a logistic regression function to obtain the probability 
of generating connected edges between nodes. This method fuses more semantic and structural information of 
nodes and reflects the original graph information more comprehensively in the vector space so that the vector 
represents the node information more completely. Through experimental validation, DC-GCN shows good per-
formance on real data sets.

However, the method proposed in this paper is only applicable to homogeneous static networks and does not 
take into account the heterogeneity and dynamics of the networks, and future research will proceed to the analy-
sis of the heterogeneity and dynamics of the networks.

6   Acknowledgement

This work was supported by the project fund: Inner Mongolia Natural Science Foundation “Research 
on Heterogeneous Network Link Prediction Method Based on Deep Learning of Graph Representation” 
(2022MS06006).



73

Journal of Computers Vol. 35 No. 4, August 2024

References

[1] A. Kumar, S.-S. Singh, K. Singh, B. Biswas, Link prediction techniques, applications, and performance: a survey, 
Physica A: Statistical Mechanics and its Applications 553(2020) 124289.

[2] Y. Pan, X.-J. Lei, Y.-C. Zhang, Association predictions of genomics, proteinomics, transcriptomics, microbiome, metab-
olomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: A comprehensive approach, 
Medicinal Research Reviews 42(1)(2022) 441-461.

[3] J. Singh, T. Litfin, J. Singh, K. Paliwal, Y.Q. Zhou, SPOT-Contact-LM: improving single-sequence-based prediction of 
protein contact map using a transformer language model, Bioinformatics 38(7)(2022) 1888-1894.

[4] E. Nasiri, K. Berahmand, Z. Samei, Y. Li, Impact of centrality measures on the common neighbors in link prediction for 
multiplex networks, Big Data 10(2)(2022) 138-150.

[5] X. Yue, Z. Wang, J. Huang, S. Parthasarathy, S. Moosavinasab, Y. Huang, S.M. Lin, W. Zhang, P. Zhang, H. Sun, Graph 
embedding on biomedical networks: methods, applications and evaluations, Bioinformatics 36(4)(2020) 1241-1251.

[6] T. Zhao, X. Zhang, S. Wang, Graphsmote: Imbalanced node classification on graphs with graph neural networks, in: 
Proc. ACM International Conference on Web Search and Data Mining (WSDM), 2021.

[7] R. Xie, C. Ling, Y. Wang, R. Wang, F. Xia, L. Lin, Deep feedback network for recommendation, in: Proc. International 
Joint Conferences on Artificial Intelligence, 2021.

[8] J. Bruna, W. Zaremba, A. Szlam, Y. Lecun, in: Proc. Spectral networks and locally connected networks on graphs,  
International Conference on Learning Representations, 2014.

[9] Y. Dong, Q. Liu, B. Du, L. Zhang, Weighted feature fusion of convolutional neural network and graph attention network 
for hyperspectral image classification, IEEE Transactions on Image Processing 31(2022) 1559-1572.

[10] B.-B. Xu, K.T. Cen, J.-J. Huang, H.-W. Shen, X.-Q. Cheng, A survey on graph convolutional neural network, Chinese 
Journal of Computers 43(5)(2020) 755-780.

[11] H.-H. Chen, G.-D. Wu, J.-X. Li, J.-Y. Wang, H. Tao, Research advances on deep learning recommendation based on 
attention mechanism, Computer Engineering & Science 43(2)(2021) 370-380.

[12] F. Lorrain, H.-C. White, Structural equivalence of individuals in social networks, The Journal of mathematical sociolo-
gy 1(1)(1971) 49-80.

[13] T. Zhou, L. Lü, Y.-C. Zhang, Predicting missing links via local information, The European Physical Journal B 71(4)
(2009) 623-630.

[14] L. Lü, C.-H. Jin, T. Zhou, Similarity index based on local paths for link prediction of complex networks, Physical 
Review E, 80(4)(2009) 046122.

[15] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18(1)(1953) 39-43.
[16] P.-M. Chuan, L.-H. Son, M. Ali, T.D. Khang, L.T. Huong, N. Dey, Link prediction in co-authorship networks based on 

hybrid content similarity metric, Applied Intelligence 48(8)(2018) 2470-2486.
[17] D. Kalman, A singularly valuable decomposition: the SVD of a matrix, The college mathematics journal 27(1)(1996) 

2-23.
[18] W. Chen, G. Feng, Spectral clustering: a semi-supervised approach, Neurocomputing 77(1)(2012) 229-242.
[19] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: online learning of social representations, in: Proc. ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, 2014.
[20] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proc. ACM SIGKDD international con-

ference on Knowledge discovery and data mining, 2016.
[21] J. Tang, M. Qu, M.-Z. Wang, M. Zhang, J. Yan, Q.-Z. Mei, Line: Large-scale information network embedding, in: Proc. 

International Conference on World Wide Web, 2015. 
[22] P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph attention networks, in: Proc. International 

Conference on Learning Representations, 2018.
[23] H. Wang, J. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, M. Guo, Graphgan: Graph representation 

learning with generative adversarial nets, in: Proc. AAAI conference on artificial intelligence, 2018.
[24] O. Du, Y. Li, Academic Collaborator Recommendation Based on Attributed Network Embedding, Journal of Data and 

Information Science 7(1)(2022) 37-56.
[25] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, H. Liu, Attributed network embedding for learning in a dynamic environment, 

in: Proc. ACM Conference on Information and Knowledge Management (CIKM), 2017.
[26] M. Cokun, M. Koyutürk, Node similarity-based graph convolution for link prediction in biological networks, 

Bioinformatics 37(23)(2021) 4501-4508.
[27] J. Ma, P. Cui, K. Kuang, X. Wang, W. Zhu, Disentangled graph convolutional networks, in: Proc. International confer-

ence on machine learning (ICML), 2019.
[28] F. Wu, T. Zhang, A. Souza, C. Fifty, T. Yu, K.Q. Weinberger, Simplifying graph convolutional networks, in: Proc. 

International conference on machine learning (ICML), 2019.
[29] J.-X. You, R. Ying, J. Leskovec, Position-aware graph neural networks, in: Proc. International conference on machine 

learning (ICML), 2019.
[30] Z. Yang, W.-W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, in: Proc. 

International conference on machine learning (ICML), 2016.


