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Abstract. Considering the complexity of traffic systems and the challenges brought by various factors in traf-
fic prediction, we propose a spatial-temporal graph convolutional neural network based on attention mecha-
nism (AMSTGCN) to adapt to these dynamic changes and improve prediction accuracy. The model combines 
the spatial feature extraction capability of graph attention network (GAT) and the dynamic correlation learn-
ing capability of attention mechanism. By introducing the attention mechanism, the network can adaptively 
focus on the dependencies between different time steps and different nodes, effectively mining the dynamic 
spatial-temporal relationships in the traffic data. Specifically, we adopt an improved version of graph attention 
network (GAT_v2) in the spatial dimension, which allows the model to capture more complex dynamic spa-
tial correlations. Furthermore, in the temporal dimension, we combine gated recurrent unit (GRU) structure 
with an attention mechanism to enhance the model’s ability to process sequential data and predict traffic flow 
changes over prolonged periods. To validate the effectiveness of the proposed method, extensive experiments 
were conducted on public traffic datasets, where AMSTGCN was compared with five different benchmark 
models. Experimental results demonstrate that AMSTGCN exhibits superior performance on both short-term 
and long-term prediction tasks and outperforms other models on multiple evaluation metrics, validating its 
potential and practical value in the field of traffic prediction.
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1   Introduction

With the acceleration of urbanization, traffic congestion has become a common phenomenon in modern life. 
Accurate prediction of traffic conditions plays a very important role in improving the efficiency of transportation 
systems, reducing congestion, optimizing route selection, providing real-time navigation, and planning urban de-
velopment.

As a key link in urban management and smart transportation systems, traffic prediction is becoming increas-
ingly important. ​However, there are still many challenges in this field, in particular the need to accurately capture 
dynamically changing spatial correlations and complex temporal dependencies [1]. These factors significantly 
increase the complexity and difficulty of the prediction. To help the reader understand these challenges intuitive-
ly, we use Fig. 1 and Fig. 2 to provide specific examples for illustration. With these graphs, we show the spa-
tial-temporal dynamics of traffic flows and the difficulty that traditional models have in capturing such dynamics.

(1) Dynamic Spatial Correlations. In previous studies, the spatial correlations between nodes are commonly 
represented by predefined static adjacency matrices, as mentioned in reference [2]. However, in real traffic envi-
ronments, the spatial relationships between roads are dynamic systems subject to various factors such as traffic 
accidents and traffic regulations. Fig. 1 illustrates a schematic diagram of the road network in a certain urban 
area, where A, B, C, and D represent four intersections equipped with traffic detectors and treated as nodes in 
the network. For example, if the traffic authority implements a rule at A intersection that prohibits left turns from 
east to west, this will directly affect the traffic flow relationship between points A and B. Specifically, due to this 
restriction, the direct traffic flow from point A to point B will decrease, which means that the impact of traffic 
volume at point A on point B will correspondingly decrease, while the impact of point B on point A will rela-
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tively increase. Additionally, although point C and point B are not directly connected geographically, due to the 
left-turn restriction at point A, vehicles wishing to travel from east to west to reach point B must detour through 
points C and D, indirectly affecting the traffic conditions at point B. Furthermore, once the traffic rules at point A 
change, the spatial correlations of the entire A, B, C, and D node network will also adjust accordingly. With such 
an analysis, we can identify the dynamic nature of spatial relationships in real traffic scenarios and their impact 
on the design of predictive models.

Fig. 1. Dynamic spatial-temporal relationship diagram of road node traffic flow

(2) Complex and Variable Temporal Dependencies. Traffic data inherently exhibit unique features on different 
time scales, including hours, days, weeks, and seasons. For example, morning and evening rush-hour traffic flows 
experience significant fluctuations, and weekday congestion patterns can be very different from those on week-
ends. In addition, temporal dependencies of traffic flow data can shift due to external events such as traffic acci-
dents, weather fluctuations, or public gatherings. Fig. 2 illustrates the daily periodicity of traffic volume but also 
reveals an anomaly: a significant decrease in traffic volume during the period from 14:50 to 16:40 on Monday 
afternoons. The anomaly could be caused by congestion caused by factors such as road accidents or road con-
struction. Therefore, when constructing traffic prediction models, it is necessary not only to take into account the 
regular temporal evolution of traffic data but also to capture and model temporal dependencies at different time 
scales, as well as potential anomalies that may arise. Such a comprehensive consideration is crucial for improv-
ing prediction accuracy.
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Fig. 2. The daily periodicity and dynamic variations of traffic flow volume
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Through in-depth analysis, we have gained a new understanding of the importance of dynamic spatial-tempo-
ral relationships in traffic data. These relations include not only the periodic variations of traffic flow over time, 
but also sudden changes caused by unpredictable factors such as traffic accidents, weather conditions, and tempo-
rary road closures. Moreover, spatial correlations are continuously affected by factors such as traffic regulations, 
road network structure, and urban planning. These dynamic spatial-temporal dependencies require traffic predic-
tion models to have a high level of adaptability and flexibility to accurately capture and respond to these complex 
traffic patterns. 

In traditional traffic prediction methods, statistical models such as Autoregressive Integrated Moving Average 
(ARIMA), Exponential Smoothing models, and Regression models have dominated. However, these models 
have significant limitations when dealing with complex, nonlinear, and high-dimensional traffic data. They typi-
cally rely on manually extracted features and are built on linear assumptions, which limits their ability to capture 
the deep complexity of traffic patterns. With the introduction of machine learning, especially deep learning mod-
els, the field of traffic prediction has made significant advances. Deep learning models such as Recurrent Neural 
Networks (RNN) and Convolutional Neural Networks (CNN) [3] have shown superiority in multiple application 
scenarios by automatically learning features from the data. However, these models generally require a large 
amount of training data and have room for improvement in modelling the dynamics of spatial-temporal data.

To address these issues, we propose a spatial-temporal graph convolutional neural network (AMSTGCN) that 
incorporates an attention mechanism. This model not only automatically learns spatial-temporal features from 
complex traffic data, but also effectively adapts to spatial-temporal relationships with different time scales and 
dynamic changes. Through experimental validation on public datasets, AMSTGCN demonstrated its superiority 
in short-term and long-term traffic prediction tasks, demonstrating its effectiveness in capturing and predicting 
dynamic spatial-temporal traffic data. The main contributions of this study are as follows:

(1) Spatial-temporal relationship modelling. We propose an improved graph attention network (GAT_v2) 
[4] approach that dynamically extracts spatial relationships instead of relying on a static adjacency matrix used 
in traditional graph convolutional networks (GCN) [5]. This approach enables the model to adapt to dynamic 
changes caused by traffic rules and events, resulting in a more effective capture of spatial correlations in traffic 
data.

(2) Long-term dependency handling. To improve the accuracy of long-term traffic trend prediction, we com-
bine gated recurrent units (GRU) and self-attention mechanisms. This enhances the model’s ability to explore 
complex dependencies within the time series and more effectively capture long-term dependencies, which are 
critical for accurate prediction of future traffic flows.

(3) Computational efficiency and performance. While incorporating advanced attention mechanisms and graph 
attention mechanisms, we prioritize computational efficiency. We simplify the model structure and optimize the 
algorithm to significantly reduce the computational resource requirements while still maintaining high-perfor-
mance predictions. This makes the model more practical, feasible, and scalable for real-world applications.

(4) Empirical study. We conduct extensive experimental validation on public datasets, and the results demon-
strate that our proposed model outperforms existing methods on both short-term and long-term traffic prediction 
tasks. Moreover, the model exhibits excellent generalization ability and robustness, further confirming the effec-
tiveness and reliability of our approach.

The rest of the paper is organized as follows. Section 2 presents the research progress and related work. 
Section 3 provides definitions of the basic concepts. Section 4 presents the specific structure and implementation 
of the AMSTGCN model. Section 5 discusses the experimental validation and analysis of the results. Section 6 
provides a summary and concluding remarks. 

2   Related Work

With advances in science and technology, methods for traffic prediction have evolved from traditional statistical 
models to modern machine learning and deep learning models. In the early stages, statistical methods such as the 
Historical Average (HA) model and the ARIMA model were predominant. These models are typically applicable 
to linear time series data, but their predictive power is limited for complex, high-dimensional, externally influ-
enced traffic data. In addition, the parameters of these methods often rely on expert knowledge for manual con-
figuration, rather than being obtained through data-driven self-learning training.

In the wave of artificial intelligence, various machine learning methods, including K-Nearest Neighbors (K-
NN) [6], Support Vector Regression (SVR) [7], Random Forest [8], and Bayesian Neural Networks [9] have been 
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widely adopted in the field of traffic prediction. These techniques enhance prediction accuracy by exploring data 
features in-depth and typically optimize performance through the combination of different algorithms. However, 
they typically perform poorly in capturing long-term dependencies in traffic data, which is crucial for understand-
ing traffic patterns and trends [10].

The rise of deep learning has brought revolutionary advances in traffic prediction. CNN benefiting from their 
remarkable achievements in image processing, has been applied in time series analysis. Researchers transform 
the spatial-temporal characteristics of traffic flow data into two-dimensional matrices (similar to images) and use 
CNN to extract features from these “spatial-temporal images” to achieve accurate prediction of speeds on exten-
sive road networks [11]. However, CNN lacks mechanisms to handle long-term temporal dependencies, which 
may limit its effectiveness in predicting long-term trends.

To overcome the issue of long-term dependencies, Recurrent Neural Networks (RNN) have been introduced 
in traffic prediction, as they possess the ability to handle sequential data with memory [12]. However, inherent 
problems of RNN, such as vanishing gradients and exploding gradients, limit their performance in modelling 
long sequences. Therefore, improved versions of RNN, such as GRU and Long Short-Term Memory (LSTM) 
[13], have been more widely used in traffic prediction due to their structural advantages and stronger perfor-
mance in addressing these challenges.

Despite extensive exploration of traffic prediction methods, traditional techniques have focused on temporal 
relationships, overlooking the significant impact of spatial dynamics on traffic patterns. To rectify this oversight, 
GCNs have been increasingly utilized for modelling and extracting spatial interrelations. GCNs have inherent 
strengths in representing non-Euclidean irregular graphs and capturing spatial correlations by aggregating infor-
mation from nodes and their surroundings, rendering them particularly suitable for traffic network analysis. As a 
result, a surge of GCN-based traffic flow prediction models has surfaced, including T-GCN [14], STGCN [15], 
and STSGCN [16], among others. To further refine the capture of intricate spatial-temporal dependencies, models 
that incorporate attention mechanisms, such as GAT [17], have been developed and integrated into frameworks 
like ASTGCN [18], GAGCN [19], STN-GCN [20], along with other approaches [21, 22]. These sophisticated 
models combine Transformer, GCN, GRU, and additional architectures to achieve exceptional prediction capa-
bilities. Nonetheless, as the complexity of these models escalates with the number of modules and depth, so does 
the computational intensity and the demand for resources.

Our study proposes an innovative model for traffic prediction that aims to combine the attention mechanism 
with GCN and GRU to intensively explore the relationships between data in both temporal and spatial dimen-
sions. Our goal is to achieve prediction performance comparable to or even better than that of a complex model 
with a relatively simple model structure. The proposed model demonstrates significant advantages in three key 
aspects. 

Firstly, in terms of spatial-temporal relationship modelling, we employ an improved Graph Attention Network 
(GAT_v2) instead of the traditional GCN approach based on a predefined adjacency matrix. GAT_v2 can adap-
tively learn dynamic relationships between nodes, which is particularly suitable for traffic prediction as it can 
accommodate spatial relation changes in the traffic network caused by regular variations or unexpected events. 
Secondly, to address the issue of long-term dependencies in time-series data, our model combines GRU with 
self-attention mechanisms. Compared to existing methods based on Long Short-Term Memory (LSTM), our 
combined approach is not only more concise but also performs equally well in handling lengthy sequences, pro-
viding an effective alternative. Finally, we carefully consider the computational efficiency during the design of 
our method, which is particularly important for resource-constrained scenarios. By optimizing the computational 
workflow, our model reduces the need for computational resources while maintaining high prediction performance. 
Compared to complex deep learning models, our approach demonstrates better practicality and scalability.

3   Problem Definition

Traffic flow refers to the movement and flow of vehicles, pedestrians, or goods in a transportation system. Traffic 
flow is characterized by its volume, speed, and density. These features reflect the congestion level, mobility, and 
efficiency of the transportation system. By managing and optimizing traffic flow, we can improve the operational 
efficiency and travel experience of the transportation system. Attention mechanisms have the potential to extract 
spatial-temporal relationships, so our study focuses on verifying their role in traffic flow prediction and evaluat-
ing the performance of designed models. To eliminate noise and perturbations caused by multiple input features, 
we specifically choose to predict traffic speeds and conduct experiments to visually illustrate the prediction re-
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sults. Of course, our model is also applicable to predicting traffic volume and traffic density.
To capture the spatial correlation of traffic speed data, we define the road network as a graph structure. 

G (V,E,A)= , Where G represents the road network graph, E represents the edge, V N=  is the number of 

road nodes, and N NR ×∈A  is the adjacency matrix reflecting the connectivity relationship between nodes. ​The 
elements may be denoted by 0, 1, and may also be measured by distances. X  represents the input characteristic 

matrix, PTX  represents the feature at the P-th time step. 
TP

Nx denotes the input feature of the N-th node at the P-th 

time step. Here the features can be multi-dimensional, that is, speed, flow, density, etc. X  can be expressed as 
Eq. (1):
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The traffic speed prediction problem becomes learning a function that can map the past P historical graphs to 
the future Q graphs given the known graph structure, which can be expressed as Eq. (2):

 .  p Qt -T + Tt f t+ tX X X X +→( 1) )( ) ( 1) ([ , , ;G] [ , , ]

 

                                           (2)

 4   Entire Structure

To effectively capture the spatial-temporal correlations in traffic data, this study proposes a spatial-temporal rela-
tionship extraction model called AMSTGCN. As shown in Fig. 3, this model consists of four core components: 
input module, spatial relation extraction module, temporal relation extraction module, and output module. In the 
input module, we perform a series of preprocessing operations on the raw traffic data to adapt to the requirements 
of the subsequent prediction task. These preprocessing steps include padding the missing data, removing outliers, 
normalizing the data, and partitioning the dataset to ensure data quality and efficient model training. The specif-
ic preprocessing method is detailed in Section 4.1 of the paper. For spatial relationship extraction, we utilize an 
upgraded version of GAT called GAT_v2. Compared to the original static attention mechanism in GAT, GAT_v2 
can dynamically capture attention relationships, which is a significant advantage for complex and dynamic traf-
fic road operation environments. The implementation details of this module are discussed further in Section 4.2. 
The temporal correlation extraction module uses gated units to capture the dependencies in the time series and 
combines the attention mechanism to compute the attention coefficients, thus revealing the temporal correlations 
between the data accurately. The specific implementation of this part is explained in detail in Section 4.3. Finally, 
in the output layer, we design a fully connected layer to generate multi-step prediction results. Through an organ-
ic combination of these four modules, the AMSTGCN model achieves high-precision traffic flow prediction. ​

4.1   Input Layer 

In a traffic scenario, traffic features can include traffic speed, traffic flow, and lane occupancy. Any of these fea-
tures can be chosen for traffic flow prediction. Typically, in short-term traffic flow prediction, equidistant sam-
pling is done at intervals of 5 minutes, 10 minutes, or 15 minutes. However, traditional traffic data collectors are 
prone to faults, such as communication issues, power supply problems, and road maintenance, which can result 
in missing or abnormal data. To ensure the accuracy of subsequent predictions, the collected data needs to be re-
processed. For outliers and missing data, padding is done by computing the historical average. To make the input 
a feature representation that can participate in the computation of the GAT network, the form of the input data 
has been adjusted as Eq. (3):
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NX  represents the N-th node feature and PT
Nx  represents the feature value of the N-th node at the P-th time 

step. NX R∈  is the node input feature that satisfies the GAT network operation and will be fed into the subse-
quent spatial relation extraction layer to obtain the spatial correlation and complete the node state update. 

Fig. 3. Block diagram of the overall structure of AMSTGCN

4.2   Spatial Relation Extraction Layer

In the context of transportation, spatial relationships between road nodes are not only characterized by fixed 
spatial locations but also exhibit dynamic dependencies that shift over time. Therefore, it is crucial to obtain dy-
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namic and adaptive relations that can account for scenario variations. GAT introduces an attenuation mechanism 
that allows each node to focus on its neighbours to varying degrees depending on their importance. This allows 
GAT to capture interactions between nodes more accurately, instead of merely averaging or weighting neighbor-
ing nodes as is done in GCN. In addition, GAT supports multi-head attention, meaning that multiple attention 
heads can be used simultaneously to learn the relationships between nodes. This approach enhances the expres-
sive power of the model and enables a better capture of complex relations within the graph structure. However, 
reference [4] demonstrates that for a fixed set of GAT keys, the resulting attention coefficient remains relatively 
invariant if attention is computed using different queries on this set of keys. In other words, the ordering of atten-
tion coefficients is the same for all nodes in the graph and independent of the query node. This implies that the at-
tention computation function is static and does not change with different queries. This is a problem with the GAT 
model, which significantly reduces the expressive power of GAT. To obtain a dynamic attention mechanism, a 
modified GAT model GAT_v2 is used in this paper. The improvement of GAT_v2 over GAT is shown in Eq. (4):
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Observing Eq. (4), we find that GAT_v2 only modifies the order of the internal operations of GAT to play the 
role of repairing the attention function. ​Readers interested in the specific proof procedure for the GAT_v2 model 
can refer to reference [4], which we directly cite and apply in this paper. Fig. 4 shows the complete computation-
al process of updating node features using GAT_v2 as an example of node i. 

 

Fig. 4. Flowchart of GAT_v2 attention mechanism computation
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GAT_v2 can be implemented by Eq. (5) ~ Eq. (7).
(1) Calculate the attention coefficient. 

( )T
 .

LeakyRelu [ ]ij i je W x || xα= ⋅                                                        (5)

ije  represent the attention value of node i relative to node j. Tα  and W is shared learning parameters. ||  de-
notes the vector concatenation. This expression means that when computing the attention coefficients, the linear 
transformation is applied after concatenation, the nonlinear computation is done by the activation function, and 
finally, the transformation is applied. In this way, it can be conditioned on the query node and finally implement 
the computation of dynamic attention.

(2) The attention coefficients are normalized by softmax.
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(3) Node character updates.
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ix ′  represents the current feature of node i after the fusion of neighbourhood information. σ  is the activation 
function.

To enhance the ability to obtain spatial correlations, a multi-head attention mechanism is used. Since the final 
output is not the final result of our prediction, which is in the middle layer of the model, we employ a concatena-
tion method such as Eq. (8). Of course, the sum-and-average approach can also be adopted depending on the dif-
ferent tasks, as shown in Eq. (9).
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4.3   Temporal Relation Extraction Layer

In the time-related feature extraction module, we use a combination of GRU and self-attention mechanisms. 
Compared to RNN and LSTM, GRU has a simpler structure and a memory mechanism, making it suitable for 
long and short-term time series prediction. The self-attention mechanism can also extract correlations between 
each time step.

The structure of the GRU is shown in Fig. 5. In GRU, the update gate and reset gate are two essential gating 
mechanisms to control the flow and update of information. The role of the update is to determine the weight of 
the hidden state of the input at the current moment and the previous moment, and at the previous moment to 
decide whether the hidden state of the input needs to be updated. The role of the reset gate is to decide how the 
input information at the current moment interacts with the hidden state at the previous moment.

GRU is calculated as shown in Eq. (10):
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Where tz  is the update gate, tr  is the reset gate, th  is the candidate hidden state, 1t -h  is the hidden state at the 

previous time step, th  is the hidden state at the last time step,   is the Hadamard product, which stands for ele-

ment-wise multiplication. σ  and tanh  are the activation function. zW , cW , and rW  are weight parameters. zb , 

rb , and cb  are the bias parameter.

Fig. 5. The basic structure diagram of GRU

After the GRU calculation, we can obtain the hidden states at all-time steps. To further obtain the long-range 
dependence, we perform an attention calculation. The attention score calculation process is shown in Fig. 6, and 
the calculation steps are shown in Eq. (11): 
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Where th  is the hidden state output of the GRU, eW  and eb  are the learnable weight and bias parameters, re-
spectively.
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Fig. 6. Schematic of the attention mechanism followed by GRU

4.4   Output Layer

Our goal is to predict the traffic flow for Q steps into the future. Therefore, a fully connected layer is used in the 
output layer to complete the dimensional transformation.

 .Relu( )o oY = W Z b+                                                                (12)

The fully connected input is the attention value Z obtained by the time extraction layer, N Q
OW R ×∈  is the 

learnable parameter and the output of the output layer is the traffic feature of each node in the future Q time 
steps.

4.5   Loss Function

During the model training process, the primary objective is to minimize the discrepancy between the observed 
traffic speed and the predicted values generated by the model. We denote the true traffic speed Y and the predict-
ed traffic speed by Ŷ . The loss function as Eq. (13):

 .regLoss Y Y Lλ= − +ˆ                                                               (13)

The first term in Eq. (13) is used to calculate the difference between the actual traffic velocity and the expected 
velocity. The next component is the L2 regularization component, which is used to control the complexity of the 
model and λ  is a hyperparameter.

5   Experiments

5.1   Datasets and Experimental Settings

To evaluate the performance of our model, we conduct experiments using the publicly available Loop Seattle 
dataset. This dataset was collected by the Seattle Department of Transportation and consists of traffic speed data 
from 323 sensor stations located on highways in the Seattle area (I-5, I-405, I-90, and SR-520). The data spans 
the entire year 2015 and is collected at a resolution of 5 minutes [23]. 
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In the experiments, we split the datasets using a ratio of 0.7:0.1:0.2, which means the Train dataset: Valid 
dataset: Test dataset = 0.7: 0.1: 0.2. The data is normalized after partitioning and we use z-score normalization 
method for normalization: ( )x x µ σ= − , maxx  is the maximum and minx  is the minimum of the sample data.

The model is developed using the PyTorch 1.9.0 deep learning framework. The specific configuration infor-
mation is as follows: CPU: Intel(R) Core(TM) i7-7800X，24GB Graphics Card: GeForce RTX 3090, CUDA 
version: 11.3.

5.2   Evaluation Metrics

To evaluate the performance of the AMSTGCN model, we use two evaluation metrics, namely Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE).

 .1

1 n

i
MAE Y Y

n =

= −∑ ˆ                                                                 (14)

2

1  .

1 n

i
RMSE Y -Y

n =

= ∑ ˆ( )                                                              (15)

Y  represents the true traffic speed, Ŷ  represents the predicted traffic speed. The smaller MAE and RMSE 
demonstrate the better prediction performance of the model.

5.3   Experiment and Result Analysis

To evaluate the performance of the model, we performed a series of experiments, including comparing the pre-
dictive power of the model to the baseline model, analyzing the effect of different components on the model per-
formance, and measuring the computational time cost.  

(1) Comparison experiments with baseline models.
Our task is to predict future velocities at the 3rd, 9th, and 12th time points using the known velocity values at 

the past 12 sampling points. Given that the raw data is sampled at 5-minute intervals, this amounts to predicting 
the next 15, 45, and 60-minute velocities based on historical velocity data from the past hour. To evaluate the 
model performance, we compare AMSTGCN with five baseline models. The comparison of the prediction per-
formance of the AMSTGCN model on the LOOP_SEATTLE dataset with the five baseline methods is presented 
in Table 1.

Table 1. The prediction performance of the AMSTGCN model and other baseline methods on the LOOP_SEATTLE dataset

Methods

LOOP_SEATTLE
15min 45min 60min

MAE RMSE MAE RMSE MAE RMSE

HA 5.32 8.96 5.32 8.96 5.32 8.96
FNN 3.17 5.99 4.45 8.13 4.99 9.05
GRU 4.27 7.67 4.40 7.93 4.52 8.14

T-GCN 3.65 5.95 4.86 7.84 5.32 8.64
DCRNN 2.94 5.96 4.07 7.33 4.40 8.15

AMSTGCN 3.73 5.94 4.06 6.62 4.21 6.91
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HA: History Average Model. It predicts future observations based on the average value of past observations 
over a certain period.

FNN: Fully connected Neural Network. We constructed the simplest three-layer fully connected neural net-
work to verify the prediction performance of the simple model.

GRU: Gated Recurrent Unit employs gate mechanisms to regulate information flow, mitigating gradient van-
ishing and exploding issues prevalent in traditional RNNs.

T-GCN [14]: Temporal Graph Convolutional Network exploits graph convolutions to discern node interactions 
and GRUs to apprehend temporal dynamics.

DCRNN [24]: Diffusion Convolutional Recurrent Neural Network synergizes diffusion convolution with re-
current networks to model the spatial-temporal dynamics inherent to traffic networks.

Based on the experimental data, the AMSTGCN model shows significant advantages in spatial-temporal pre-
diction tasks. By combining the spatial correlation acquisition capability of GAT_v2 with the temporal feature 
extraction advantage of the attention mechanism, this model significantly improves the predictive performance 
across different time scales. Specifically, AMSTGCN does not outperform DCRNN, FNN, and T-GCN when 
predicting 15 minutes, but its MAE of 3.73 and RMSE of 5.94 are still quite impressive. This indicates that 
AMSTGCN can provide competitive results even within a relatively short prediction window.

The advantage of AMSTGCN becomes apparent as the prediction horizon extends to 45 minutes. MAE was 
reduced to 4.06 and RMSE was further reduced to 6.62, outperforming all compared models. This suggests that 
AMSTGCN has a stronger ability to capture and exploit long-term dependencies in the data.

The advantage of AMSTGCN becomes even more prominent at the 60-minute prediction point. It achieves an 
MAE of 4.21 and RMSE of 6.91, again showing the lowest error rate among all models. This significant perfor-
mance improvement is attributed to the deep spatial relationship mining capability of GAT_v2 and the flexibility 
provided by the attention mechanism in handling temporal information.

In summary, the AMSTGCN model not only maintains good performance in short-term prediction but also 
demonstrates excellent capabilities in long-term prediction. This is driven by the carefully designed model struc-
ture, in particular the efficient integration of GAT_v2 and attention mechanisms, which enables AMSTGCN to 
accurately capture the crucial spatial-temporal dynamics in complex data. As a result, it achieves higher accuracy 
and reliability in future predictions. This has practical implications and applications in domains that require accu-
rate spatial-temporal predictions, such as traffic management, weather forecasting, and urban planning. 

The predictions for node 10 and node 320 in the LOOP_SETTLE dataset are displayed in Fig. 7 and Fig. 8, 
which help to make the prediction results more understandable.

Fig. 7. Visualization of prediction results for node 10 in the LOOP_SEATTLE dataset                      
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Fig. 8. Visualization of prediction results for node 320 in the LOOP_SEATTLE dataset

(2)​ Performance testing of models with different components.
To deeply investigate the specific role of GAT_v2 and the attention mechanism in spatial-temporal prediction 

models, we conduct a series of comparative experiments. These experiments aim to assess the contribution of 
each component in capturing spatial-temporal correlations through different combinations of models. Specifically, 
we integrated and combined baseline models such as GAT, GAT_v2, GRU, and Attention Mechanisms to con-
struct various hybrid models. These hybrid models are designed to reveal the unique value and synergistic impact 
of each module in integrating spatial-temporal information. For ease of comparison and understanding, we pres-
ent the structure of different model combinations in Table 2. In addition, to simplify the exposition and aid the 
reader’s understanding, we refer to the AMSTGCN model as G2GA. 

Table 2. Models and naming of different combinations

Model name GG GGA G2G G2GA (AMSTGCN)

Combination GAT+GRU GAT+GRU+Attention GAT_v2+GRU GAT_v2+GRU+Attention

With these comprehensive tests, we aim to demonstrate the advantage of GAT_v2 in spatial relation mining 
and the effectiveness of the attention mechanism in extracting temporal sequence features. We also compare the 
MAE and RMSE values predicted for different time points. The performance tests for the models with different 
components are shown in Table 3.

We further examine the performance of different models at prediction intervals of 15, 30, 45, and 60 minutes. 
At the 15-minute point, the G2G model performs slightly better than the others, but the AMSTGCN model is 
also very close in performance. However, as the prediction duration increased, especially in the 60-minute fore-
cast task, we observed that the AMSTGCN model has lower MAE and RMSE values compared to the other three 
models, with respective values of 4.21 and 6.91. This indicates that the AMSTGCN model is more effective in 
capturing and exploiting complex patterns within spatial-temporal data, especially for long-term prediction. This 
can be attributed to the integration of GAT_v2 and attention mechanisms in the AMSTGCN model, which are 
better equipped to capture spatial relationships and temporal sequential features in spatial-temporal data. GAT_
v2 has the advantage of mining spatial relationships to effectively capture correlations between geographic loca-
tions, while the attention mechanism can weight information across different time steps in the temporal dimen-
sion to extract salient features from the time series. With this combination, the AMSTGCN model can predict 
future spatial-temporal changes with greater accuracy. This has significant practical implications for applications 
in various fields such as traffic flow prediction, weather prediction, and human motion prediction. 

Overall, through a comprehensive comparison and analysis of different models, we have validated the spe-
cific role of GAT_v2 and the attention mechanism in spatial-temporal prediction models. As a hybrid model 
integrating these two components, the AMSTGCN model demonstrates superior performance in the long-term 
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spatial-temporal prediction task. These findings provide valuable references and guidance for further research 
and applications of spatial-temporal prediction models. ​The visual comparison results for MAE and RMSE are 
shown in Fig. 9.

Table 3. Performance testing of models with different components  

Methods

LOOP_SEATTLE
15min 30min 45min 60min

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GG 3.76 5.92 3.96 6.37 4.12 6.72 4.31 7.10
G2G 3.67 5.83 3.90 6.36 4.09 6.77 4.27 7.10
GGA 3.72 5.95 3.89 6.33 4.07 6.68 4.24 6.98
G2GA

(AMSTGCN) 3.73   5.94 3.90 6.29 4.06 6.62 4.21 6.91

Fig. 9. Changes in performance metrics of different models for prediction tasks of different time lengths

(3) Model training time measurements.  
To demonstrate the computational performance advantage of AMSTGCN, we compare its training time with 

different models. Fig. 10(a) illustrates the comparison of AMSTGCN’s training time with four baseline models. 
We can see that AMSTGCN has a relatively short training time of 67.289 seconds. By comparing the results, we 
can observe that while the training time of AMSTGCN is longer than FNN and GRU, it is significantly shorter 
than DCRNN, which requires the most training time. In addition, AMSTGCN also has a slightly shorter training 
time compared to T-GCN. This indicates that even though AMSTGCN is more complex than some simple mod-
els like FNN, it is more efficient in handling complex graph data.

Fig. 10(b) illustrates the training time with different components. When comparing the number of training 
epochs of different models, we find that the G2G model has a significant computational efficiency advantage 
over the GG model. Specifically, the training time of the G2G model is 67.288s, while the training time of the 
GG model is 72.125s. This indicates that the GAT_v2 version is more efficient than the original GAT version, 
saving approximately 4.837s of training time without introducing the Attention mechanism. When we introduce 
the attention mechanism into both GG and G2G models, we observe an increase in training time. This is because 
the attention mechanism adds complexity and computational overhead to the model. However, even after incor-
porating the Attention mechanism, the training time of the AMSTGN model remains highly close to that of the 
G2G model with only a 0.001s increase. This minor increase is negligible and suggests that the AMSTGN model 
maintains strong computational efficiency while improving model performance with the Attention mechanism. In 
contrast, the training time of the GGA model is significantly increased to 74.938s, which is an increase of 2.813s 
compared to the GG model. This increase in time may be attributed to the lower computational efficiency of the 
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GAT version when dealing with the Attention mechanism.
Therefore, we can conclude that the GAT_v2 version provides higher computational efficiency under the same 

conditions, while the AMSTGN model maintains acceptable computational efficiency while incorporating the 
Attention mechanism. 

                        (a) Training time with baseline models                              (b) Training time with different components

Fig. 10. Changes in performance metrics of different models for prediction tasks of different time lengths

We can conclude that the advantage of AMSTGN lies in its ability to capture temporal dependencies and 
graph structural features, which allows it to maintain relatively high accuracy while effectively controlling the 
computational cost. Therefore, AMSTGCN should be a relatively good choice if the application scenario requires 
taking into account the dynamic nature of the graph and the complex interactions between nodes.

6   Conclusions

This study presents a novel model that integrates GAT_v2 and GRU to address the core issues in traffic predic-
tion. This model goes beyond the limitations of traditional GCN in modelling spatial-temporal relationships. 
By adaptively learning the dynamic relationships between nodes, it effectively handles spatial relation changes 
caused by regular variations or unexpected events in the traffic network. Moreover, the model combines the 
self-attention mechanism and GRU to elegantly address the problem of long-term dependencies in time series 
data. Moreover, the model is designed with a focus on computational efficiency, optimizing the computational 
process to adapt to resource-constrained real-world applications while maintaining strong predictive perfor-
mance. Experimental results on public datasets validate the superior performance of the proposed model com-
pared to existing methods on short-term and long-term traffic prediction tasks and also demonstrate its excellent 
generalization ability and robustness.

Future work can further expand and deepen the achievements of this study in several directions. First, explore 
the integration of this model with different types of spatial-temporal data modelling approaches, such as introduc-
ing multi-scale analysis or considering more complex spatial-temporal relationships. Second, given the diversity 
of real-world traffic scenarios, the adaptability and robustness of models remain crucial research topics that can 
be tested and improved by introducing more diverse datasets and scenarios. Finally, as computational resources 
continue to evolve, exploring how to leverage parallel computing and distributed systems to tackle larger-scale 
traffic prediction problems is also an essential direction for future research.
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