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Abstract. This article focuses on the grasping method of stacked parts in industrial production processes. 
Firstly, a 3D vision grasping system based on the U-Robot is designed. Then, in order to improve the accu-
racy of robot grasping, a kinematic model of the robot is established, and the robot’s hand eye calibration is 
completed. After the target is recognized by the 3D vision system, the optimal grasping pose is calculated, and 
then the optimal grasping pose is used as the target point to plan the optimal path for the robot to grasp, and 
then guide the robot to complete the grasping. In the simulation stage, this paper takes the outer ring of the 
bearing on the actual production line as the grasping object, builds an experimental platform, and completes 
the simulation of recognition and grasping. The experimental results show that the method proposed in this 
paper improves the recognition accuracy of stacked parts and the planning efficiency of grasping paths.
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1   Introduction

With the continuous upgrading of intelligent manufacturing technology and the continuous improvement of 
manufacturing automation level, robots are widely used in various fields such as enterprise production, special 
operations, military medical care, etc. Among special robots, transportation robots, medical robots, and high-risk 
operation robots are replacing humans to complete complex and dangerous tasks, and industrial robots are grad-
ually replacing human labor to complete monotonous and repetitive work. In the development strategy of “Made 
in China 2025” released by China, the future development plan of the robotics industry is also mentioned, and 
the prospects for the development of robots are very promising [1].

In manufacturing production engineering, in order to reduce labor costs, improve production efficiency, and 
complete hazardous tasks such as high pressure, high temperature, noise, dust, or other radioactive pollutants that 
humans cannot handle, more and more enterprises are entrusting tasks that previously required manual labor to 
industrial robots. This improvement has epoch-making significance for improving the working conditions of pro-
ducers. At the same time, if workers continue to perform simple and repetitive work, it can cause nerve fatigue 
and even mental depression, leading to safety hazards and production accidents. Therefore, the emergence of in-
dustrial robots is of great significance in liberating middle and low-end labor, improving production accuracy and 
efficiency [2].

In the actual production process, part grasping and grasping parts to complete assembly work are typical pro-
duction links in the production line. Therefore, industrial robots realize the grasping and assembly of workpieces, 
which is an important application of industrial robots. Traditional industrial robots generally use teaching aids 
for offline programming or simulation software for online teaching programming, allowing the robot to achieve 
point-to-point motion along the path it has traveled according to the production task. Therefore, when the robot 
realizes conventional grasping, it has high requirements for the placement position of the target object it grasps, 
requiring the parts to maintain a unified position and posture, follow the automated production line for trans-
portation, have a fixed posture, and do not affect or stack with each other [3]. The robot can complete a single 
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production task according to the teaching program. As far as the robot grasping environment is concerned, it can 
be seen that traditional robot production processes can only complete simple repetitive grasping operations in 
structured scenes, and lack adaptive capabilities in unstructured scenes, making it difficult to meet the automation 
grasping needs of complex scenes with complex workpiece shapes, single textures, and chaotic stacking.

Therefore, in order to improve the recognition ability of industrial robots for stacked parts and the intelligence 
level of the grasping process, as well as the efficiency of industrial robot operations, this paper uses binocular 
vision to recognize stacked parts, and then guides the robot to efficiently grasp stacked parts at any angle by 
estimating the pose of the parts and judging the grasping position. Therefore, the work done in this article is as 
follows:

1) Built a robot grasping system and provided a detailed description of the hardware selection parameters in 
the system;

2) Established a kinematic model for the robot and performed hand eye calibration and distortion adjustment 
for both the robot and binocular vision;

3) During the grasping process, the pose of the parts was first estimated, and an improved algorithm was used 
in the matching stage to complete the rough registration of the parts. Then, in the fine registration stage, the 
rough registration results were optimized, and the optimal grasping point was determined. Finally, the robot’s 
grasping path was planned with the optimal grasping point as the goal;

4) Set up an experimental environment, completed the grasping experiment of the bearing outer ring, and esti-
mated the trajectory.

2   Related Work

For the grabbing of stacked and unordered parts, the process of using 3D vision guided industrial robots to grab 
generally includes several parts, such as data preprocessing, point cloud local feature description, 3D object rec-
ognition, and pose estimation.

Jiexian Xu from Gree Electric has developed a robotic arm control system for injection molding products 
that can be applied to automatic grasping of injection molding machines. The stacking recognition algorithm is 
applied to the robotic arm of the injection molding machine, and a motion control strategy for implementing the 
algorithm in the robotic arm is planned. After simulation experiments, this algorithm can control the robotic arm 
to automatically arrange the finished products neatly in the desired arrangement, thereby improving production 
efficiency [4].

Haifeng Ma from South China University of Technology proposed a hierarchical progressive random downs-
ampling algorithm to solve the difficult identification, segmentation, and grasping problems of scattered stacked 
bearing rings in industrial applications. The collected point cloud model was downsampled, and the dataset was 
created using the proposed RGB threshold based automatic annotation algorithm. PointNet++ network was used 
to predict and segment the upper surface of the bearing ring that could be grasped, and RANSAC algorithm 
was used to accurately segment the upper surface of the bearing ring to be grasped. Finally, an anti-interference 
grasping point selection strategy was adopted to complete the pose detection of the bearing ring to be grasped. 
The success rates of the three grasping experiments in actual scenarios are all above 98%, which verifies their 
effectiveness [5].

Bo Liu from Xi’an University of Engineering proposed a disorderly sorting method for stacked tube yarn 
robots to address the problems of inaccurate recognition and unstable grasping positions when stacking job tar-
gets. A 3D visual perception robot system for sorting bobbin yarn was constructed, and the Kinect V2 camera 
was used to obtain image information of stacked bobbin yarn, and the collected point cloud of bobbin yarn was 
processed; The original point cloud is cropped using the M-estimation sampling consistency algorithm (MSAC) 
and the pass through filtering algorithm. The improved E-R segmentation algorithm and ICP algorithm are used 
to complete the segmentation and registration of the point cloud, obtaining the pose information of the tube yarn; 
Finally, use robots for grasping experiments. The experimental results show that this method can achieve recog-
nition and positioning of job targets in stacking scenarios, and the system’s grasping success rate reaches 86%, 
which can meet the actual production needs of tube yarn sorting [6].

Shengjun Xu from Xi’an University of Architecture and Technology proposed a stacked workpiece recogni-
tion and localization algorithm based on multi-scale feature attention Yolac network to address the problem of 
multi workpiece stacking obstruction in unstructured scenes. The algorithm incorporates multi-scale fusion and 
feature attention mechanisms to improve the quality of network prediction of stacked workpiece masks. A target 



227

Journal of Computers Vol. 35 No. 4, August 2024

detection module based on dilation encoding is designed to enhance the adaptability of the network to stacked 
workpieces of different scales. Secondly, the constructed multi-scale feature attention Yolac network is used to 
predict the mask and bounding box of stacked workpieces, thereby determining the grasping point and rotation 
angle of the target workpiece. Through grasping experiments, the success rate of the robot workpiece sorting sys-
tem for stacked workpiece sorting operations reached 97.5% [7].

Jingmei Zhai from South China University of Technology used the local convex connection method to seg-
ment the stacked scattered target point cloud data collected by the Kinect V2 camera into separate point cloud 
subsets. She defined the capture score to select the top unobstructed target as the target to be captured, ensuring 
that the robot can capture the target from top to bottom during sorting. Then, based on the matching similarity 
function for different types of targets, the 3D target was identified and the capture points were located. Finally, 
the truncated least squares semi definite relaxation algorithm and the nearest point iteration algorithm were fused 
to establish a 6D pose estimation model for the target, ensuring accurate registration in the case of low coinci-
dence rate between the target point cloud and the model point cloud [8].

Xinlong Zhu from Shanghai University of Engineering and Technology proposed a method based on an im-
proved Mask R-CNN algorithm for fast detection and instance segmentation of stacked automotive parts, ad-
dressing issues such as slow recognition, detection, and segmentation speed, low accuracy, and poor robustness. 
The article first optimizes the feature extraction network in Mask R-CNN by replacing ResNet+Feature Pyramid 
Networks (FPN) with MobileNets+FPN as the backbone network, effectively reducing network parameters and 
compressing model volume to improve model detection speed. Then, by adding a Spatial Transformer Networks 
(STN) module after the ROI Align structure of Mask R-CNN, the detection accuracy of the model is ensured. 
The experimental results showed that the improved model compressed the size of the model, doubled the rec-
ognition and detection speed, and also improved the mean average precision (mAP) of the model compared to 
before the improvement. The detection of untrained new samples showed that the model was faster than Mask 
R-CNN, lighter and more accurate, and could quickly and accurately detect and segment stacked automotive 
parts, verifying the practical feasibility of the improved model [9].

Jin Xu from Jinan University proposed a grasping posture detection algorithm based on grasping clusters and 
collision voxels to address the common problem of grabbing scattered and stacked parts in industry. The pro-
posed grasping cluster is a continuous grasping posture set defined on the part, which solves the problem of los-
ing grasping points and low screening efficiency caused by the use of discrete fixed grasping points in traditional 
methods. The article first voxelizes the bin and scene point cloud, then marks the voxels containing the bin or 
point cloud as collision voxels, and marks the voxels adjacent to the collision voxels as risk voxels, thus building 
a voxelized collision model. Based on the geometric properties of the grasping cluster, candidate grasping poses 
and their corresponding grasping paths are calculated. Finally, fast collision detection is achieved by detecting 
the voxel types that the grasping path passes through, in order to select the optimal grasping posture. In order to 
verify the feasibility of the algorithm, a complete Bin Picking system was built based on the proposed algorithm, 
and simulation experiments and actual grasping experiments were conducted on common parts in various prac-
tical industrial scenarios. The results showed that the algorithm can quickly and accurately detect safe grasping 
postures, with an average success rate of 92.2% in actual grasping and an average emptying rate of 87.2% in the 
material box, which is significantly improved compared to traditional methods. Moreover, there were no colli-
sions during the grasping process, which can meet the requirements of practical industrial applications [10].

From the research results of various scholars, it can be inferred that the current research lacks recognition and 
accurate grasping of stacked parts. In order to accurately identify and grasp parts in unstructured scenes in auto-
mated production lines.

The chapter structure of this article is as follows: Chapter 2 mainly introduces the research results of relevant 
scholars, Chapter 3 builds a binocular vision recognition system based on actual production needs, Chapter 4 
mainly describes the grasping strategy of parts and guides the path of the robotic arm’s grasping, Chapter 5 is the 
simulation experiment part, Chapter 6 is the conclusion part, and Chapter 7 introduces the supporting projects of 
this article.

3   Design and Calibration of 3D Grasping System

This section mainly completes the construction of the 3D vision system for industrial robots, camera calibration, 
and description of the matching strategy for point cloud data. The entire visual system consists of two parts: 
hardware and high-precision positioning and grasping software. The hardware part mainly includes a large scene 
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fixed base 3D visual equipment composed of industrial binocular cameras, camera lenses, and projection devices, 
a six joint industrial robot and its control system, a robot end dedicated flexible fixture, and a system workstation. 
The software part is divided according to functions, mainly including point cloud acquisition module, point cloud 
matching module, hand eye calibration module, communication module, and display module for recognition 
and grasping results. The software part is not the focus of this article, so this article only introduces the platform 
framework of the software system, as shown in Fig. 1.

Fig. 1. System framework composition structure

The hardware layer uses Orbbec’s binocular sensors, this series of full scene binocular 3D cameras is equipped 
with the self-developed depth engine chip MX6800 by Orbbec, and is equipped with a high-performance active 
passive fusion imaging system. It is not afraid of sunlight interference and has excellent adaptability in different 
environments such as strong light, low light, indoor, and outdoor. The camera can output high-quality depth im-
ages with a maximum resolution of 1M and a maximum frame rate of 60 frames per second, with a depth diag-
onal field of view (FOV) of over 100 ° and a maximum measurement range of over 10 meters; In addition, they 
are equipped with RGB image sensors that match the depth FOV, high-performance six axis IMU sensors, inte-
grated with unified hardware timestamps, precise depth and RGB frame synchronization, and flexible and easy-
to-use multi machine synchronization functions. During use, it is fixed on a specific bracket to scan the surround-
ing scene and obtain a 3D point cloud depth map. The robotic arm uses a UR six degree of freedom robot, with 
the base located in front of the camera to the right. The PC used in the experiment is an alien R2 laptop, which 
runs in Ubuntu 16.04 environment. The parameters of the binocular sensor and PC are shown in Table 1.

Table 1. Hardware parameter list

Heading level Parameter name Parameter values
PC Resolution 2560*1600

Hard disk 512G
CPU i7
Graphics card RTX4060

Gemini 2L Depth image resolution 1280*800
Frame rate 30fps
Interface USB3.0
Working Voltage 5V DC
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When the machine vision system is working, the visual sensor performs a series of mathematical processing 
on the image signal. Digital image processing dominates in image processing due to its flexible and simple algo-
rithms, high calculation accuracy, and strong adaptability. The principle of the processing process is as follows: 
an image can be represented using three-dimensional parameters, and the expression function is as follows:

( ), , .h x y t x y tα β λ= + +                                                               (1)

The principle of binocular vision detection for detecting objects is as follows: when two cameras capture im-
ages, they are not in the same position, so there will be a pixel position difference between the same points in the 
left and right images, which is called disparity. By using the parameters of the binocular camera and the disparity 
of the measured point, combined with the formula calculation, the depth and position information of the detected 
part can be obtained. The principle of binocular stereo vision recognition is shown in Fig. 2.

Fig. 2. Schematic diagram of binocular vision recognition principle

In the image, point ( , )bjectO x y  is the measurement target point in space, and points ( , )lI x y  and ( , )rI x y  are 

the points where point bjectO  is projected onto the imaging planes of the left and right cameras, respectively. lA  

and rA  respectively represent the optical centers of the left and right cameras, lA  and rA  are on the same hori-
zontal line, the optical axes of the left and right cameras are parallel to each other, and their imaging planes are in 
the same plane. f  is the focal length of the camera, and L represents the straight-line distance from point bjectO  

to the baseline of the binocular camera, which is the distance between measurement point bjectO  and the binocu-
lar camera. According to the similarity triangle theorem:

( )
.l rl x xL f

L l
− −−

=                                                                   (2)

In the formula, l represents the center distance between the two cameras of the binocular camera, and l rx x−  

is the position difference of point bjectO  projected onto the imaging plane of the left and right cameras. Therefore, 
the depth information L can be expressed as:

.
l r

f lL
x x

×
=

−
                                                                         (3)
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Through the above process and the description of camera depth information, ideal accuracy can be achieved 
by adjusting the distance between the camera and the detected object in the camera assumption process.

UR5 is a six axis lightweight industrial robotic arm designed by Denmark’s Universal company, as shown in 
Fig. 3. It has ISO human-machine collaborative safety certification and does not require safety fences for opera-
tion, meeting the requirements of grasping systems. It also has mature and stable hardware and secondary open 
interfaces, making it a widely used robotic arm system in China. This robotic arm has a self weight of 18.4kg, a 
load weight of 5kg, a working radius of 850mm, and a pose repeatability accuracy of ± 0.1mm. The UR5 robotic 
arm can communicate through TCP/IP and Modbus TCP to achieve synchronous control of the robotic arm and 
end effector by the upper computer.

Fig. 3. UR5 Robot schematic diagram

To achieve drive control between the robotic arm and ROS system, communication and interface configura-
tion on the PC side will be carried out. The basic steps are as follows:

(1) Based on TCP/IP communication protocol, complete communication and data exchange between the upper 
computer PC and the robotic arm.

(2) Use simulation environment software to complete the driving control of the motion planning part of the 
upper computer PC.

(3) Implement motion planning and drive control of robots based on robot simulation control system. The 
software algorithm layer is the core layer of this system. Based on the robot operating system, the entire grasping 
process is divided into three modules: image processing module, grasping sampling module, grasping evaluation 
calculation module, grasping pose generation module, and finally motion planning module. The motion planning 
module is mainly based on Moveit! This open-source motion planning library is used for grasping motion plan-
ning of robotic arms.

3.1   Robot Kinematic Modeling

Before conducting kinematic analysis on the robot, it is necessary to establish the D H−  coordinate system and 
fix a reference coordinate system on each mechanical linkage. The relationship between each coordinate system 
can be described through translation and rotation transformations [11]. The coordinate diagram is shown in Fig. 
4.
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Fig. 4. Schematic diagram of robot force analysis

The D H−  parameter can be obtained from the D H−  coordinate system according to the corresponding 
rules, as shown in Table 2.

Table 2. Parameters of D H−

n
1nθ + nα nβ nL

1 0mm 0
1β 425mm

2 0mm / 2π 2β 392mm

3 -82.5mm / 2π− 3β 17mm

4 88mm / 2π 4β 0mm

Ln represents the length of the n-th mechanical link, αn represents the torsion angle of mechanical link n, θn+1  
represents the offset of mechanical link n relative to mechanical link n+1, and βn is the angle between mechanical 
link n and mechanical link n+1. The coordinate transformation relationship between the two connected mechani-
cal links is shown in the following matrix:

1

1 1 1 1
1

1 1 1

cos sin 1
sin cos cos cos cos cos

.
sin sin cos sin cos sin

1 0 0 1

n n n

n n n n n n nn
n

n n n n n n

l
l

W
l

β β
β θ β θ θ θ
β θ β θ β θ

+

+ + + +
+

+ + +

 
 ⋅ ⋅ ⋅ =
 ⋅ ⋅ − ⋅
 
 

                              (4)

In the formula, 1
n

n W+  represents the position and orientation of the n-th mechanical link relative to the n+1-th 
mechanical link. Multiply the transformation matrices between the four mechanical linkages in order to obtain 
the homogeneous transformation matrix of the end effector coordinate system relative to the base coordinate sys-
tem:

0 0 1 2 3
4 1 2 3 4 .W W W W W= ⋅ ⋅ ⋅                                                                 (5)
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Robot motion planning is the process of planning the shortest collision free path at the fastest speed within 
a limited time. However, as the degrees of freedom of the robotic arm increase, the spatial dimension of the 
planning space increases, the convergence speed slows down, and the computational complexity increases. 
Traditional planning algorithms are not suitable for complex task environments. Therefore, based on the kine-
matic analysis mentioned above, this article conducts path planning for the robotic arm to grasp parts.

3.2   Visual Calibration Experiment

For a binocular depth camera, based on the same world coordinate system, the rotation matrices C1 and C2, as 
well as the translation matrices M1 and M2 [12], of the binocular are obtained separately. Their expressions can be 
written as:

1

1 1 1

1

.
C W

C W

C W

X x
Y C y M
Z z

   
   = +   
      

                                                                (6)

2

2 2 2

2

.
C W

C W

C W

X x
Y C y M
Z z

   
   = +   
      

                                                                (7)

Among them, ( ), , Wx y z  represents the corresponding world coordinate system value. Transform the above 
two coordinate expressions to obtain:

1
1 1

1 1 2 1 1 2 2

1

.
C W

C W

C W

X x
Y C C y M C C M
Z z

− −

   
   = + −   
      

                                                    (8)

If the relative positions of the two depth cameras are denoted as 1P  and 2P  respectively, the positions are rep-
resented as follows:

1
1 1 2 .P C C−=                                                                           (9)

1
2 1 1 2 2 .P M C C M−= −                                                                 (10)

In the process of actual 3D vision guided robots completing grasping work, the camera position may under-
go slight displacement due to vibration and loose bolts, resulting in changes in the hand eye relationship. In the 
case of continuous production such as automated production lines, it is necessary to ensure the effectiveness and 
consistency of the robot’s hand eye coordination work. Therefore, it is necessary to coordinate the 3D grasping 
vision system and industrial robots to complete the hand eye calibration task. At present, hand eye self cali-
bration is designed based on traditional calibration algorithms. Due to the requirements of traditional hand eye 
calibration algorithms for part posture information, it is difficult to complete the calibration task in the miniatur-
ization of calibration parts. At the same time, the calibration process requires the front of the calibration board to 
be placed under the camera’s field of view, which seriously limits the automation of calibration data acquisition 
and leads to a decrease in the robustness and calibration accuracy of the entire automatic calibration system. 
Therefore, this article uses a hand eye calibration algorithm based on 3D position information to improve the tra-
ditional hand eye self calibration system, study the rules for collecting hand eye self calibration data, and achieve 
automatic acquisition of calibration data to complete the hand eye self calibration task. The calibration process is 
as follows:

Step 1: Self check the hand eye relationship. The method first controls the robotic arm to move within a small 
range, and records the pose data of group n robotic arm and the three-dimensional position data of the operating 
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object. Based on this group n data, the camera’s offset degree is self checked. The small-scale movement rule is: 
move each joint by α  degrees at the current robot angle. If the first movement exceeds the measurement range, 
move each joint by α−  degrees. If it continues to exceed the range, move each joint by / 2α  and / 2α−  until 
the camera measures the depth information of the marker. The eye in hand system uses the following formula for 
self checking.

1 2 1 2 .tx M M M A Aα= ⋅ ⋅ ⋅ ⋅                                                              (11)

In the equation, tM α  represents the hand eye relationship that includes the robot’s motion time t and rotation 

angle α, and , 1,2i iM =  represents two different robotic arm movements. A1 and A2 are the shooting results of the 
camera corresponding to two movements. As long as the calibration piece remains stationary, the theoretical 
value of x should be equal to 0. However, due to the error between the hand eye calibration result and the cam-
era measurement result, the actual value of x is not equal to 0. Similar to the use of eye in hand system for self 
checking.

1 1 2 2 .t tx M M A M M Aα α= ⋅ ⋅ − ⋅ ⋅                                                         (12)

The theoretical value of x in the eye in hand system should also be equal to 0. Similarly, due to errors in hand 
eye calibration results, camera measurements, and robotic arm poses, the actual value of x in the eye in hand sys-
tem is not equal to 0.

Although there are errors between the camera shooting results and the pose of the robotic arm, the range of 
these errors can be obtained based on the device parameters. When the result of x exceeds the maximum error 
caused by these two factors, it indicates that the error source must include hand eye calibration errors. Therefore, 
x can to some extent reflect the accuracy of hand eye calibration results, and taking the average of x yields:

1
2

1

1 .
1

n

i
i

x x
n

−

=

=
− ∑                                                                    (13)

x  is the self checking parameter. When x is greater than the set threshold, it is considered that the previous 
hand eye relationship is completely unusable as a reference due to the large camera offset. Otherwise, it is con-
sidered that the previous hand eye relationship can be used as a reference to obtain the final motion range.

Step 2: Find the reference hand eye relationship. When the camera offset exceeds the set threshold, continue 
to move the robotic arm within a small range, measure 20 sets of data again, use the Dirichlet product method for 
hand eye calibration, and perform self inspection on the calibration results. If the result is less than the set thresh-
old, it is considered that the initial calibration has been completed and we have obtained a hand eye relationship 
that can be used as a reference. If the result is greater than the threshold, we will increase the number of measure-
ment data sets until the result is less than the threshold. When the camera offset is less than the set threshold, the 
previous hand eye relationship is directly used as a reference. After obtaining the reference hand eye relationship, 
the relative position relationship between the target and the robotic arm can be further calculated.

Step 3: Unify the working space of the robotic arm and the field of view of the camera to obtain the data ac-
quisition space. After the operations in steps 1 and 2, we obtained a hand eye relationship that can be used as 
a reference. But this result is limited by the size of the measurement data, resulting in lower accuracy. At this 
point, the Monte Carlo improvement method is used to combine the relative position relationship between the 
target and the robotic arm to obtain the workspace of the robotic arm. By referring to the hand eye relationship, 
the camera field of view is unified with the workspace of the robotic arm to obtain the motion limit range of the 
robotic arm. In theory, the motion target of the robotic arm within this range will not exceed the field of view, but 
due to the significant error in the reference hand eye relationship, the motion range is further reduced to 3/4 of 
the original limit.

Step 4: Final hand eye calibration. Finally, we control the robotic arm to move within a limited range for data 
acquisition, thus completing the final hand eye calibration.

After the above process, the preparation work at the system level has been completed, providing a hardware 
foundation for further part pose estimation and grasping strategies.
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4   Design and Calibration of 3D Grasping System

Many scholars have conducted extensive research on extracting point cloud features from image information of 
stacked parts, performing point cloud segmentation, and preprocessing point cloud data.

Shengyin Zhu from Geely Group proposed a point cloud camera extrinsic calibration method based on 2D im-
ages and a part point cloud segmentation method based on image semantic segmentation to solve the problem of 
inaccurate positioning or low grasping accuracy of robotic arms [13].

For the grasping and recognition of centrifugal pump parts, Leping Qian has designed and built an intelligent 
disordered feeding system for centrifugal pump impellers based on 3D machine vision. The system uses bin-
ocular vision combined with structured light technology to collect three-dimensional information in the scene, 
achieving a grasping success rate of over 90% under different placement conditions [14].

Hua Luo from Northwestern Polytechnical University used surface structured light 3D measurement technol-
ogy to construct a 3D visual measurement equipment with a fixed base for large scenes. He obtained 3D point 
cloud data of large and complex parts and performed feature extraction with reduced accuracy. In the feature seg-
mentation method, the Euclidean clustering segmentation method was used [15].

In summary, the research results on obtaining and processing point cloud data are relatively mature. This 
section focuses on the registration of point cloud segmentation data with the model point cloud. Based on the 
registration results, the complete model point cloud is transformed into the scene, and the pose information of the 
transformed model point cloud is calculated to guide the robot in grasping planning.

4.1   Pose Estimation

The purpose of registration is to obtain the rotation matrix and translation vector from the source point cloud to 
the template point cloud. In the scenario of this article, the parts are stacked on top of each other and have differ-
ent poses. To accelerate the registration speed and accuracy, it generally needs to go through two stages: coarse 
registration and fine registration [16]. 

The rough registration method is as follows:
1) Calculate the normals of the template and candidate target objects separately;
2) Calculate the feature descriptors of the template and candidate target objects separately;
3) Finally, execute the sampling consistency algorithm to achieve point cloud registration.
Firstly, n points are extracted from the point cloud Y (x1, x2, ..., xn) to be registered, and then a minimum dis-

tance threshold l is set, requiring that the distance between these n points is greater than l. The purpose of do-
ing this is to ensure that the feature description factors of these points are different. Then, points with the same 
feature factor features as the points extracted in the first step are found in the target point cloud Yobject (x1, x2, ..., 
xn). The found point cloud may have one or more points, and a point is randomly selected from them as the cor-
responding point of point clouds Y (x1, x2, ..., xn) and Yobject (x1, x2, ..., xn). Finally, the transformation matrix of the 
pairwise corresponding points obtained in the second step is calculated, and the size of the Huber penalty func-
tion is used as the performance indicator for point cloud registration. When the value of the penalty function is 
minimized, the resulting transformation matrix is the final result of coarse registration. After obtaining the coarse 
registration result, the optimal transformation relationship between the two point clouds is obtained to optimize 
the registration result, that is, fine registration. The steps are as follows:

1) Use the point cloud Y'
 (x1, x2, ..., xn) and target point cloud Yobject (x1, x2, ..., xn) that have undergone coarse 

registration in the previous section as the point cloud dataset for fine registration;
2) Search for the nearest corresponding point in the target point cloud Yobject (x1, x2, ..., xn) for each point in the 

point cloud Y'
 (x1, x2, ..., xn) to be registered, and use the obtained point set as the initial corresponding point pair;

3) There may be significant errors in the corresponding transformation relationships in the initial correspond-
ing point pairs, which can affect the final registration results. Direction vector thresholds are used to remove 
these highly erroneous corresponding points;

4) Calculate the rotation matrix and translation vector to minimize the mean square error between correspond-
ing points;

Set the number of repetitions for the above process. When the number of repetitions exceeds 50, the point 
cloud to be registered is completely aligned with the target point cloud, achieving the effect of precise registra-
tion.

Rough registration is the rough matching of two unknown pose point cloud objects, while the fine matching 
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criterion is to minimize the spatial pose difference between the two point clouds based on rough registration. The 
process of point cloud registration is shown in Fig. 5.

Fig. 5. Point cloud registration process

This article uses a sampling consistency strategy for coarse registration, and the registration pseudocode is as 
follows:

Solution steps
1:  Calculate the Fast Point Feature Histograms (FPFH) feature descriptors for both the template point cloud and the 
scene point cloud separately;
2:  Matching points in two point clouds using FPFH feature descriptors based on point clouds;
3:  Randomly select n (n ≥ 3) pairs of matching points;
4:  Using singular value decomposition to solve for the rotation and displacement in this matching scenario;
5:   Calculate the corresponding error at this time;
6:  Repeat steps 3-5 until the conditions are met, and take the rotation and displacement corresponding to the mini-
mum error as the final result.

Rough registration cannot obtain an accurate transformation matrix between two point clouds, and it es-
sentially only utilizes a portion of the key points of the two point clouds, which can result in significant errors 
compared to the real transformation matrix. After transformation, the two point clouds only roughly overlap, so 
further optimization of the precise registration step is needed to obtain an accurate pose transformation relation-
ship. The most commonly used algorithm for accurate point cloud registration is the Iterative Closest Point (ICP) 
algorithm, with the following pseudocode:

Solution steps
1:  Initial pose transformation, assuming the initial rotation matrix obtained from coarse registration is R, the trans-
lation vector is M, and k is initialized to 0.
2:  Find the nearest point set and search in the template point cloud; The nearest neighbors of each point form a 
point pair. If the distance between two points is greater than a certain threshold, it is ignored. Otherwise, it is added 
to the nearest point pair set.
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3:  Optimization of transformation parameters, estimating rigid transformation parameters based on the nearest point 
pair, and updating iteration errors:

( )
2

1

1 m

k ki k
i

q R p t
m

ε
=

= − −∑
4:  By rigidly transforming the matrix parameters, new point cloud data is obtained, while updating the transforma-
tion matrix and translation vector.
5:  Repeat steps (2) - (4) above, and stop iterating when the number of iterations reaches the set value or the error is 
less than a certain threshold.

4.2   Pose Estimation

This article first determines the optimal grasping point of the part based on the pose obtained in the above chap-
ters, and then plans the robot’s grasping pose guided by the optimal grasping point [17].

According to Chapter 4.1, if the template point cloud Y (x1, x2, ..., xn) is taken, the origin of the point cloud’s 
coordinate system is O, and the vector yi from the origin to each spatial point. By using coordinate transforma-
tion, the local coordinate system of the template point cloud is distributed with the maximum variance and the 
minimum covariance, that is, the covariance is 0 except for the diagonal values. Construct the covariance matrix 
of the template point cloud Y:

1 .TCov B B
n

= ⋅                                                                     (14)

Among them, BT is the decentralized matrix, which decomposes the covariance matrix to obtain eigenvalues. 
The eigenvector corresponding to the maximum eigenvalue is the transformation formula of the coordinate axis. 
At this time, the template point cloud can be rotated to the origin of the workbench coordinate system through 
this transformation matrix. After converting the template point cloud to the origin of the workbench coordinate 
system, the maximum value of the x, y, z coordinate in the grasping direction can be calculated to obtain the 
grasping center. Assuming the determined grasping direction is the x-axis direction, the grasping center Ozhua is:

( )max min ,0 .T
zhuaO B x x Cov= − +                                                        (15)

This article uses a six degree of freedom robotic arm and a sampling based motion planning method to achieve 
obstacle avoidance planning and grasping of the robotic arm. By sampling the joint angle space, the complex 
modeling of environmental obstacle information in the angle space is avoided [18]. The planning process is as 
follows:

1) Initialize the joint angles of the industrial robot pose;
2) By randomly sampling the joint angle space and introducing a target bias strategy, Ozhua is the joint angle of 

the robotic arm obtained by reverse solving the target pose to be grasped. The probability of target bias set in this 
paper is 0.37. The schematic diagram of the reverse solving process is shown in Fig. 6:

Fig. 6. Point cloud registration process
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3) Select three sampling points from the initial path, use kinematic forward solution to obtain the correspond-
ing pose of the node, and perform collision detection in the workspace. If the node experiences collision interfer-
ence, add the new node to the random sampling array as the parent. However, if there is no interference, continue 
sampling.

4) Repeat steps 2-3. When the distance error between the point and the target node in the workspace is less 
than 1 mm and the attitude error is less than 0.01, obtain a path that can be planned and terminate the iteration.

The algorithm flowchart is shown in Fig. 7.

Fig. 7. Point cloud registration process

This section mainly describes the grasping strategy for stacked parts, omitting the point cloud feature ex-
traction and processing steps. After the point cloud feature processing is completed, the part pose is determined 
through two processes: coarse registration and fine registration. Once the part pose is determined, the optimal 
grasping posture can be determined and the robot can be guided to complete the optimal path planning for part 
grasping. The planning method is described in the form of pseudocode.

5   Experiment and Result Analysis

This article uses stacked bearing outer rings for grasping experiments and conducts 8 registration experiments in 
actual scenarios. The registration experiment results are shown in Fig. 8.
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Fig. 8. Registration results

The statistical table of point cloud registration results is shown in Table 3.

Table 3. Point cloud registration results

Experimental group Rough registration efficiency Precision registration efficiency
The first time of the first group 0.027s 0.0478s
The second time of the first group 0.051s 0.059s
The third time of the first group 0.049s 0.624s
Second group, first time 9.903s 8.768s
Second group, second time 12.39s 12.089s
Second group, third time 4.986s 5.879s
The first time of the third group 28.974s 30.879s
Third group, second time 30.637s 29.768s
Third group, third time 4.982s 5.087s

After using the pose estimation method proposed in this article, the estimation efficiency has been significant-
ly improved, and the estimation accuracy has also been greatly improved. The registration time has been greatly 
reduced compared to not using RANSAC to remove mismatched points. The final ICP scores for the registration 
of point clouds of the same type of parts in the first group and the experiment were all below 0.0025, indicating 
high registration accuracy.

Set conditions in the simulation environment ROBODK and obtain the trajectory planning path results as 
shown in Fig. 9.

Fig. 9. Grasp trajectory planning
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6   Conclusion

In the visual localization algorithm based on point to feature, this article provides a detailed introduction to the 
technical details and improvement measures during the implementation and implementation of the algorithm, 
which improves the recognition efficiency of the point to feature based visual localization method in practical use 
and enhances its performance in industrial parts. In robot motion planning, this article is based on the ROS robot 
operating system. Completed the modeling and kinematic forward and backward solutions of the UR 5 robotic 
arm. Avoiding the complex modeling of obstacles in the workspace in the joint angle space of the robotic arm, 
and discussing in detail the obstacle avoidance and grasping strategy of the robotic arm, the flexibility of the ro-
botic arm operation is improved. In the comprehensive experiment of visual localization and grasping, this paper 
completed multiple sets of visual localization experiments for scattered and stacked scenes. A comprehensive 
comparison of segmentation driven visual localization methods shows that the visual localization strategy and 
method adopted in this paper have high accuracy and are easy to deploy, which has certain guiding significance 
for practical industrial production.

In terms of 3D visual localization, the visual localization method adopted in this article avoids the need for 
massive data based on learning methods. However, with the increase of object categories in the scene, object 
detection and instance segmentation strategies represented by deep learning can endow the scene with certain se-
mantic information. By comprehensively using RGB image information and depth image information, the posi-
tion of the grasping point can be estimated to avoid the dependence on the model in pose estimation and improve 
the robustness of the method. 
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