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Abstract. Rice, as one of the world’s major staple crops, is highly susceptible to various factors such as 
extreme weather conditions, differences in cultivation types, and the diversity of varieties. Rice crops are 
increasingly threatened by various pests and diseases, particularly by “double-migration pest” (Brown plan-
thopper and Rice leaf roller), which have shown a tendency for severe infestations. The current rice industry 
faces widespread issues of excessive pest control, leading to pesticide residue exceeding safe limits, causing 
environmental pollution in farmlands, and posing a threat to food security to some extent. This paper focuses 
on Brown planthopper and Rice leaf roller in Hunan Province, proposing a pest prediction method based on 
GCN-AGRU using multidimensional data collected from multiple pest monitoring stations in Hunan. This 
method considers the mutual influence of meteorological conditions and pest occurrences in various counties 
and cities, constructing a graph structure that reflects the spatial relationships between monitoring stations. 
By calculating the distance weights between stations, the model effectively identifies the spatial dependencies 
of pest occurrences. Additionally, GRU is introduced to enhance the ability to extract temporal sequence fea-
tures, and an attention mechanism is employed to identify important features. Experiments demonstrate that 
the proposed GCN-AGRU prediction method achieves high accuracy and reliability in predicting pest trends 
over multiple days.
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1   Introduction

The rice industry faces multifaceted challenges due to the combined effects of various factors such as planting 
systems, cultivation management, crop distribution, and climatic conditions, one of which is the high incidence 
of pests and diseases. Rice, as one of the world’s major staple crops, is cultivated globally on approximately 180 
million hectares, with China accounting for 18.5% of this area and contributing 31% of the global output [1]. 
Currently, the rice field area in China is around 29.92 million hectares, which represents 25% of the country’s 
total arable land [2]. The production of rice is directly linked to food security and the livelihoods of farmers. 
However, rice crops are increasingly threatened by various pests and diseases due to extreme weather conditions, 
different rice cultivation methods, and complex varietal differences. Annually, pest-related diseases cause rice 
yield reductions ranging from 4 to 5 million tons, leading to significant attention on measures to control rice 
pests and diseases. Among these, the migratory pests of rice, such as Brown planthopper and Rice leaf roller, are 
particularly destructive during various growth stages of the crop. Moreover, the current practice of excessive pest 
control in the rice industry often leads to pesticide residues exceeding standard limits [3], thereby polluting the 
farmland environment and posing threats to food safety to some extent. This situation necessitates a more cau-
tious consideration of the sustainability and environmental friendliness of pest control measures while addressing 
pest and disease issues.

Addressing the control of rice pest infestations requires attention to the forecasting of pest occurrence trends. 
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Pest infestation is a highly complex system characterized by diversity, unpredictability, cyclical patterns, and 
predictable traits. Early research focused on analyzing the relationship between meteorological data and pest 
activity through statistical methods, utilizing weather parameters such as temperature, humidity, and rainfall to 
predict pest population dynamics. For instance, R. Mouly et al. [4] determined the impact of abiotic variables on 
leafhopper populations in organic mango orchards and developed an integrated weather forecast model, demon-
strating the significant influence of maximum temperature and relative humidity on pest populations. Bao et al. 
[5] introduced new methodologies into the short-term forecasting of rice leaf folders using stepwise regression 
methods and the Kalman filter algorithm, further optimizing the timeliness and accuracy of the prediction mod-
els. Yan et al. [6] compared the performance of multivariate regression and artificial neural networks (ANN) 
in predicting pests such as melon thrips and diamondback moth, finding that ANN showed clear advantages in 
prediction accuracy. Furthermore, Jayanthi et al. [7] used ANNs and the Quasi-Newton (QN) algorithm to pre-
dict the catch of oriental fruit flies, showcasing the high accuracy of ANNs in estimating catch amounts. Narava 
et al. [8] combined autoregressive integrated moving average (ARIMA) and ANN methods, demonstrating that 
feedforward neural networks of ANN are best suited for effective pest prediction. Sharma [9] proposed a fuzzy 
inference system combined with multi-objective evolutionary algorithms and ANNs, offering a new perspective 
for predicting the timing of crop planting and pest occurrence rates. Skawsang et al. [10] used ANNs, random 
forests, and multivariate linear regression analysis methods, integrating ground meteorological variables and 
satellite-derived host plant variables to provide accurate short-term forecasts for brown planthopper populations 
in central Thailand. In deepening the application of deep learning technologies, Xiao et al. [11] used long short-
term memory networks (LSTM) to address cotton pest occurrence issues, proving the advantages of LSTM in 
predicting pests such as cotton bollworm compared to other machine learning methods. Chen et al. [12] proposed 
a model based on bidirectional long short-term memory networks (Bi-LSTM), further revealing the strong poten-
tial of deep learning technologies in capturing the temporal relationships between pest occurrences and climate 
features.

This study focuses on significant pests in rice—Brown planthopper and Rice leaf roller—as the subjects of 
research, constructing a spatiotemporal prediction model for rice pest infestations based on GCN-AGRU. The 
objective of this model is to provide more targeted information to assist agricultural decision-making, thereby 
enhancing rice yields, reducing economic losses, and supporting the intelligent and sustainable development of 
agricultural production.

2   Related Works

2.1   Graph Convolution Network (GCN) 

Graph neural network (GNN) is a class of deep learning models specifically designed to process graph-structured 
data. Their goal is to learn effective representations of nodes within the graph or of the entire graph itself, while 
preserving the structural information of the graph. These representations capture the characteristics of the nodes 
and their interactions, thereby revealing the intrinsic structural properties of the graph. GNN achieve this by it-
eratively propagating and aggregating information among the nodes of the graph, where each node updates its 
representation by integrating its own features with those of its neighbors. This dynamic aggregation process en-
ables GNN to capture both local and global structural features within the graph, thus providing deep insights for 
various graph analysis tasks such as node classification, graph classification, and link prediction. Graph Neural 
Networks can be defined as follows:

[ ] [ ] [ ]1 ( , , , ).t t
v v c n nh f x x o v h e v x e v+ = (1)

The function f ( )  represents the updating of a node’s hidden state, xv denotes the features of node v, xco[v]  
represents the features of the edge connecting nodes v, ht

ne[v] denotes the features obtained at the t−th layer, and 
xne[v] represents the features of the nodes connected to node v. The core of GNN lies in optimizing the function 
f ( )  through deep learning methods to establish connections between network layers and capture node features.

GCN [13] represents an important implementation of graph neural networks, extending the convolution oper-
ation from Convolutional Neural Networks (CNN) to graph data, adapting to the complexities of non-Euclidean 
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spaces. Unlike CNN, which perform convolutions on regular grid structures to capture local spatial features, 
GCN implement convolutions on the nodes of graphs, taking into account the relationships between nodes and 
their diverse neighbors. This shift enables GCN to directly identify and extract significant patterns within graph 
structures, making them suitable for various node-level and graph-level prediction tasks. The graph convolution-
al framework is illustrated in Fig. 1.

Fig. 1. Diagram of the GCN architecture

The core of GCN based on spectral methods lies in transforming the operations of GCN into linear computations 
within the spectral domain of the graph Laplacian matrix L, utilizing the spectral structure of the graph to capture 
complex relationships between nodes [14]. Initially, define an undirected graph G = (V, E, A) with its adjacency 
matrix A and N ND ×∈  as the corresponding degree matrix. The Laplacian matrix L is defined as L = D − A. Due 
to its symmetry, the Laplacian matrix can be eigen-decomposed as L = U ˄ UT, where U is an orthogonal matrix 
composed of the eigenvectors of L, serving as the graph’s Fourier basis, and [ ]( )0 1,..., N N

Ndiag λ λ ×
−Λ = ∈  is a 

diagonal matrix with the eigenvalues of L on its diagonal. A signal Nx R∈  on the graph U can undergo a Fourier 
transform ˆ Tx U x∈ , and the inverse Fourier transform is realized through ˆx Ux=  , where the matrix involved in 
the inverse Fourier transform process can be represented as:
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In this context, V


 represents the column vectors that constitute the Fourier basis matrix, and xk is the k−th 
row vector of the signal matrix on the graph. This notation is designed to simplify the inverse Fourier transform 
process, thus making convolution operations in the frequency domain more direct and straightforward. The graph 
filter gθ is defined as a function related to the eigenvalues of the Laplacian matrix, enabling the creation of di-
verse filters to regulate the influence of different spectral components on the ultimate signal. The graph convolu-
tion operation can be defined as:

( ) ( ) .Ty g L x Ug U xθ θ= = Λ (3)
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The graph signal x is processed in the spectral domain through the filter gθ and then transformed back to the 
spatial domain. This processing method allows the GCN model to filter the signal, enhancing or attenuating 
specific frequency components in the spectrum. However, directly calculating the eigen-decomposition of the 
graph’s Laplacian matrix L incurs a very high computational cost. In order to address this problem, Defferrard et 
al. [15] proposed a spectral-domain GCN named ChebyNet, which uses Chebyshev polynomials to approximate 
the eigen-decomposition of the graph Laplacian matrix L, reducing complexity. ChebyNet defines its convolution 
kernels through a truncation at the K-step of Chebyshev polynomials, and its expression is as follows:

K 1

0
( ) ( ) .k k

k
g L x T L xθ θ

−

=

≈ ∑  (4)

max

2 .LL I
λ

= − (5)

1 2( ) 2 ( ) ( ).k k kT L LT L T L− −= −    (6)

In this context, L  represents the normalized Laplacian matrix, I is the identity matrix, and λmax is the max-

imum eigenvalue of L. ( )kT L  denotes the k−th order Chebyshev polynomial, starting from T0 = I and T1 = L  , 
which can recursively compute polynomials of any order. Utilizing this polynomial approximation, the graph 
convolution operation of ChebyNet can be rewritten as:

K 1

0
( ) ( ) .k k

k
g L x T L xθ θ

−

=

= ∑  (7)

The spatial approach begins with the spatial structure of the graph and defines graph convolution by aggregat-
ing the neighborhood features of nodes. This method operates directly on the nodes of the graph. For node i, its 
feature vector hi is updated after the convolution operation to h'i . The calculation process can be expressed by the 
following formula:

{ }( )( : ( ) ).i jh W AGGREGATE h j i bσ′ = ∈Ν + (8)

In this formula, W is the learned weight matrix, b is the bias term, σ(●) is a nonlinear activation function, and 
AGGREGATE(●) is an aggregation function that collects the feature vectors hj of the neighboring nodes j of node 
i. The function N(i) represents the set of neighboring nodes of node i. This process can be used to capture the lo-
cal topological structure of the node. By stacking multiple such convolutional layers, deeper structural informa-
tion of the graph can be learned.

2.2   Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is an effective improvement on the Recurrent Neural Network (RNN), which 
is specifically designed for processing sequential data. A distinctive characteristic of RNN is it recurrent con-
nections within the network, which enable them to preserve and leverage information from previous time steps 
as they process the current input. However, RNN often face issues with gradient vanishing or exploding when 
dealing with long sequences, making it challenging for the model to learn long-term dependencies within the se-
quence. The instability of gradients occurs because, during backpropagation, the gradients are continuously mul-
tiplied by the weight matrices between time steps, leading to drastic increases or decreases in the gradient values.

Moreover, the recursive nature of RNN requires each time step’s computation to depend on the output of 
the previous time step, limiting the model’s parallel processing capabilities and making the training of large-
scale RNN models time-consuming and resource-intensive. To overcome these drawbacks, the Long Short-Term 
Memory (LSTM) network [16] was proposed. LSTM introduces three gating mechanisms—forget gate, input 
gate, and output gate—that effectively manage the storage, updating, and retrieval of information. These mech-
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anisms enable LSTM to capture long-term dependencies, significantly enhancing the model’s performance and 
stability in handling sequential data.

GRU simplifies the model architecture based on the LSTM network by optimizing the three gating mecha-
nisms in LSTM into two—namely, the update gate and the reset gate. The update gate assists the model in de-
termining how much of the previous information to retain in the current state, while the reset gate decides how 
much of the previous state information to forget. This design retains LSTM’s ability to handle long-term depen-
dencies while simplifying the network structure and reducing computational complexity. The simplified gating 
mechanism in GRU ensures that the model can efficiently process sequential data without the overhead associat-
ed with LSTM’s more intricate structure.

By having fewer gates, GRU reduces the number of parameters and operations needed per time step, leading 
to faster training and inference times. This reduction in complexity makes GRU particularly advantageous when 
working with large datasets or in resource-constrained environments where computational efficiency is crucial. 
Despite the simplification, GRU has been shown to perform comparably to LSTM on a variety of tasks, often 
achieving similar levels of accuracy and robustness in capturing temporal dependencies in sequential data.

The architecture of a GRU, as depicted in Fig. 2, illustrates its streamlined structure. The update gate (z) 
and reset gate (r) work together to control the flow of information within the unit. The update gate controls the 
amount of the previous hidden state that is transferred to the current time step.  Conversely, the reset gate adjusts 
how much of the past information should be discarded, thus enabling the unit to reset its memory as necessary.

This efficient mechanism allows GRU to capture complex temporal patterns without the extensive computa-
tional overhead typically associated with LSTM. Consequently, GRU is extensively employed in diverse appli-
cations such as natural language processing, speech recognition, and time-series forecasting, where they provide 
robust performance and enhanced efficiency.

Fig. 2. GRU network architecture diagram

The internal formula for GRU is as follows:

[ ]1( , ).t z t t zz W h x bσ −= + (9)

[ ]1( , ).t r t t rr W h x bσ −= + (10)

 [ ]1tanh( , ).t h t t t hh W r h x b−= ∗ + (11)



1(1 ) ).t t t t th z h z h−= − ∗ + ∗ (12)

Where zt , rt , th  and ht represent the update gate, reset gate, candidate hidden state, and final hidden state, re-
spectively. Wz , Wr and Wh are the weight matrices, while bz , br and bh are the corresponding bias vectors.
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2.3   Attention

The attention mechanism, originating from the field of natural language processing, primarily functions by 
computing attention scores to selectively focus on key parts of the information [17]. These scores represent the 
importance of the information at each time point in the sequence, enabling the model to prioritize the most cru-
cial information for the prediction task. The calculation of the attention mechanism involves the following steps: 
Initially, the output feature vectors from the GRU are transformed through a fully connected network. This trans-
formation employs the tanh activation function to map the vectors into a specific range, preparing the data for the 
computation of attention scores. This step essentially adjusts the feature representations to make them suitable 
for the subsequent attention calculation. Next, another fully connected network, followed by a Softmax function, 
is used to compute the attention scores for each time point. These scores reflect the relative importance of each 
time point with respect to the prediction task. The Softmax function ensures that the attention scores sum to one, 
effectively normalizing them into a probability distribution. Finally, the original GRU output features are weight-
ed by the computed attention scores. This results in an attention-weighted feature vector that highlights the criti-
cal temporal features in the sequence. By emphasizing these key points, the model can focus on the most relevant 
information, improving its performance on the prediction task. The calculation of the attention mechanism can be 
represented as:

1tanh( ).outM W H= (13)

2 2softmax( ).W M bα Τ= + (14)

.Hβ αΤ= ⊗ (15)

where Hout = (h1, h2, ..., ht) is the output feature vector, W1 and W2 are the weight matrices of the fully connected 
layers, and b2 is the bias term.

2.4   GCN-AGRU Prediction Model for Rice Insect Pests

A graph-based approach is employed to predict pest occurrences between monitoring points while also consider-
ing their meteorological factors, resulting in the creation of a predictive model that combines GCN and AGRU. 
This model aims to delve deeply into the spatial correlations and temporal patterns of pest occurrences in rice 
fields. The input to the model includes data collected from pest monitoring points, which possess both spatial and 
temporal dimensions. In the spatial dimension, the input data include the geographical location information of the 
monitoring stations, represented through a constructed weighted graph, where each monitoring station serves as 
a node. The edges between nodes represent the spatial correlations between stations, and this associative strength 
is calculated based on geographical distances. In the temporal dimension, the input data comprise historical me-
teorological data and pest occurrence data at various time points, organized into feature matrices that are updated 
over time, providing dynamic inputs for the model.

Spectral methods are used for the extraction of spatial features through GCN analysis. This approach lever-
ages the graph Laplacian matrix and the framework of Fourier transforms to extract spatial features from the 
interconnections between monitoring stations. Spectral methods are stable and, based on the global properties of 
the graph, can effectively identify spatial patterns within the monitoring network. These patterns include not only 
local connectivity but also the global layout of the monitoring stations, making spectral methods an effective 
means to handle irregular graph structures. Moreover, spectral methods provide a more natural and mathematical 
approach to expressing and processing graph convolutions, enabling the use of existing deep learning architec-
tures and optimization techniques. Compared to spatial methods, spectral methods do not require the explicit de-
sign of filters to handle different spatial configurations; instead, filters are directly defined by the inherent spectral 
properties of the graph, simplifying the model’s design and training process.

Following spatial feature analysis, the model progresses to the extraction of temporal features, a process man-
aged by the GRU network. The time series data from each monitoring point are input into the GRU layer, where 
GRU, through its unique gating mechanism, selectively remembers or forgets past information, providing a fea-
ture representation at each time point that integrates the impact of historical data. In the attention mechanism part 
of the model, a self-attention mechanism is employed to further enhance the model’s performance. It enhances 
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the model’s ability to capture important information by learning different subspace representations of the input 
data in parallel. Fig. 3 illustrates the overall structure of the model.

Fig. 3. GCN-AGRU model architecture diagram

2.5   Selection of Evaluation Indicators

To comprehensively evaluate the performance of the GCN-AGRU model in time-series prediction of rice pest 
infestations, multiple evaluation metrics were considered. These metrics provide a multidimensional view of 
the model’s performance, assessing not only the accuracy of predictions but also the magnitude of errors and 
the correlation of the predicted results. The main metrics used include Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination (R²) 
[18]. RMSE and MAE primarily reflect the average magnitude of errors between the predicted values and the ac-
tual values, providing a benchmark for intuitively assessing the model’s performance in quantifying the precision 
of pest occurrence time-series predictions. The R² coefficient measures the consistency between model predic-
tions and actual values, evaluating the model’s accuracy in capturing the relationships between variables. MAPE 
offers a percentage evaluation of prediction accuracy, suitable for assessing performance in time-series forecast-
ing problems. The specific formulas for these metrics are as follows:
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Where m represents the number of samples, yi denotes the actual value of the i−th observation, and ˆiy  rep-
resents the model’s predicted value for the i−th observation. y  is the average of all observed values.
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In classification tasks, the confusion matrix is a key tool for evaluating the performance of a model, providing 
a clear visual representation of the model’s classification ability across different categories. It primarily consists 
of four parts: True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). True 
Positives and True Negatives refer to the counts of positive and negative instances that the model correctly clas-
sifies, respectively, while False Positives and False Negatives represent the counts of instances where the model 
incorrectly classifies positives as negatives and negatives as positives, respectively. Table 1 shows a structured 
representation of this concept.

Table 1. Confusion matrix

Confusion matrix Positive forecast Negative forecast
Actual positive TP FN
Actual negative FP TN

The confusion matrix can be analyzed using multiple evaluation metrics to describe the performance of the 
model from different perspectives. Weighted accuracy takes into account the proportion of samples in each cat-
egory, assigning different weights to correct predictions for different categories. This approach can address the 
bias issue of traditional accuracy on unbalanced datasets. The formula for calculation is as follows:

1
.

n
i i

i
i i i i i

TP TN
Weighted Accuracy w

TP TN FP FN=

+
= ×

+ + +∑ (20)

In the formula, n represents the total number of categories, and wi is the weight for the i category. 
The F1 Score, as the harmonic mean of precision and recall, considers both the accuracy and sensitivity of the 

model. It effectively balances the impact of false positives and false negatives on unbalanced datasets. For multi-
class classification problems, calculating the F1 Score for each category and taking its weighted average allows 
for a comprehensive assessment of the model’s overall performance. The weighted F1 Score allocates weights 
according to the sample size of each category, ensuring that minority classes are adequately represented in model 
evaluations. The formula for calculation is as follows:

2 .Precision RecallF1 Score
Precision Recall
× ×

=
+

(21)

1
  .

n

i i
i

Weighted F1 Score w F1
=

= ×∑ (22)

In the formula, F1i  is the F1 Score for the i−th category. Precision is the proportion of true positive predictions 
in all positive predictions made by the model, and recall is the proportion of true positives detected by the model 
out of all actual positives. The formulas for calculating these metrics are as follows:

.TPPrecision
TP FP

=
+

(23)

.TPRecall
TP FN

=
+

(24)

3   Study Area and Data Collection

Hunan Province has been selected as the study area, located between 24°38’N to 30°08’N latitude and 108°47’E 
to 114°15’E longitude, with a total area of about 211,800 square kilometers. It hosts major water systems, in-
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cluding Dongting Lake, providing abundant water resources that create favorable conditions for agricultural 
production. Hunan features a subtropical humid monsoon climate with distinct seasons, plentiful rainfall, and 
ample sunlight. The average annual temperature ranges from 16°C to 18°C, with annual precipitation between 
1,200 mm and 1,700 mm, offering excellent natural conditions for the growth of crops such as rice. Hunan is one 
of China’s important bases for the production of grain and economic crops, consistently leading the nation in 
rice cultivation area, with double-cropping rice areas comprising a quarter of the national total. The province’s 
agricultural production also faces threats from various pests, particularly migratory pests, which significantly 
impact the yield and quality of rice. In light of this, the study has selected 19 counties and cities in Hunan where 
pest infestations are particularly severe as key research subjects, as shown in Fig. 4. These areas provide an ideal 
environment for constructing a deep learning-based spatiotemporal predictive model for rice pests.

Fig. 4. Geographic distribution of the study area

Pest monitoring data were sourced from the Hunan Plant Protection and Plant Inspection Information 
Network, selecting daily monitored pest counts of rice leaf folders and planthoppers during the rice growing sea-
son from multiple counties and cities in Hunan Province from 2010 to 2023 as research subjects. Meteorological 
data were obtained from the “ERA5-Land Daily Aggregated-ECMWF Climate Reanalysis” dataset, which ag-
gregates the original hourly data of ERA5-Land into daily summaries. This dataset is provided jointly by Google 
and the Copernicus Climate Change Service Centre and accessed via the Google Earth Engine (GEE) platform. 
Before proceeding with data analysis, daily Relative Humidity (RH) calculations were performed on the ERA5-
Land data. Relative humidity is calculated based on daily recorded 2-meter air temperature and 2-meter dew 
point temperature, as described in formulas (18) and (19) [19]:

( )
( )

.de T
RH

e T
= (25)

17.67( ) 6.112exp .
243.5

te t
t

 =  + 
(26)

Where Td represents the dew point temperature at 2 meters height, and T represents the air temperature at 2 
meters height.
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4   Experiments and Analysis

4.1   Data Preprocessing and Model Parameterization

In the data preprocessing section, this chapter selects meteorological and pest data from the rice growing period 
of May to September from 2010 to 2023 in Shaodong County, Hunan Province, as the dataset. The data on two 
major rice pests—Rice leaf roller and Brown planthopper—are used as the targets for prediction. The collected 
data undergo standardization and quality filtering to ensure consistency in format before being input into the 
model. Initially, pest protection data are screened for missing and anomalous values. Detected anomalies are re-
moved to clear any potential errors or inconsistencies in the data. Subsequently, missing values in the dataset are 
filled using linear interpolation. The processed data are then combined with meteorological data to construct a 
comprehensive dataset for predicting rice pest infestations. Afterwards, a graph structure is constructed to repre-
sent spatial connections between monitoring stations, using the longitude and latitude information of the stations 
to calculate the distance weights. These calculated distance weights are integrated into the graph structure, con-
necting monitoring stations with edges to form the foundational framework of the graph convolutional network. 
After establishing the graph structure and calculating weights, the input features of the model are standardized.

This article employs the haversine formula to calculate the shortest great-circle distance between two points. 
This distance not only represents the spatial relationship in geographical terms but also reflects the ecological 
and meteorological connections that may influence the spread of pestilence. The haversine formula is defined as 
follows:

2 22 arcsin sin ( ) cos( ) cos( )sin ( ) .
2 2

ij ij
ij i jd r

ϕ λ
ϕ ϕ

 ∆ ∆
 = +
 
 

(27)

In the formula, dij represents the haversine distance between nodes i and j, where φi and φj denote the latitudes, 
and λi and λi denote the longitudes of the two points, respectively. r represents the radius of the Earth, while ∆φij 
and ∆λij represent the differences in latitude and longitude between the two points, respectively. The calculated 
distance weights are integrated into the graph structure, connecting monitoring stations as edges to form the 
foundational framework of the graph convolutional network. These edge weights directly influence the intensity 
of information propagation in the graph convolution operations and are crucial for the model to capture spatial 
dependencies.

To ensure that the model can effectively learn and predict the temporal variations in rice pest infestations, 
data preprocessing steps are taken. To address the issue of inconsistent dimensions and significant differences in 
numerical ranges among different data features, this study employs two common methods of data normalization: 
Min-max normalization and Z-score normalization. Min-max normalization linearly transforms the original data 
to fit within the [0,1] interval. This method effectively adjusts the scale of the data while preserving the relative 
relationships between the data points. The formula for Min-max normalization is as follows:

min

max min

. x xx
x x

∗ −
=

−
(28)

In the formula, xmin and xmax represent the minimum and maximum values in the dataset, respectively.
Z-score normalization involves standardizing the data by calculating the mean and standard deviation. This 

process transforms the data such that the resulting distribution has a mean of 0 and a variance of 1, conforming 
to a standard normal distribution. The formula for Z-score normalization is as follows:

. xx
σ
µ∗ −

= (29)

In the formula, μ represents the mean of the data, and σ represents the standard deviation of the data.
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To determine which data normalization method is more suitable for the rice pest prediction model in this 
study, two methods—Min-max normalization and Z-score normalization—are used to preprocess the data. The 
processed data are then used to train deep learning models of the same structure to compare the differences in 
model training effects between these two normalization methods. Special attention is given to analyzing their loss 
function value decline curves during the model training process. Specific experimental results are shown in Fig. 
5.

Fig. 5. Loss curve

The results indicate that data processed with Z-score normalization exhibit a smoother loss decline curve and 
faster convergence. Therefore, Z-score normalization is selected as the data preprocessing method. The dataset is 
divided into three parts: training set (60%), test set (20%), and validation set (20%).

This experiment was conducted on a system equipped with 16GB of RAM, an NVIDIA GeForce RTX 3060 
Laptop GPU, and a 12th Gen Intel(R) Core(TM) i7-12700H CPU @ 2.30GHz processor. The GCN-AGRU net-
work model was built using Python 3.10 and the PyTorch deep learning framework. The settings for the model 
parameters are presented in Table 2.

Table 2. Model Parameter Setting

Name Parameter Name Parameter
GCN layers 2 GCN activation ReLU 
Number of GCN hidden units 64 GRU activation Tanh
GRU layers 2 Optimizer Adam
Number of GRU units 128 Learning rate 0.005
Chebyshev polynomials of order K 5 Training epoch 200
Dropout ratio 0.05 Batch size 32

4.2   FCN-AGRU Model Validation and Result Analysis

To evaluate the performance of the proposed method, meteorological and pest data from Shaodong County, 
Hunan Province, during the rice growing stages from May to September of 2010 to 2023 were initially selected 
as the dataset, focusing on two major rice pests—rice leaf folders and brown planthoppers—as prediction targets. 
The effectiveness and accuracy of various models in predicting pest time series were assessed by comparing the 
performance of statistical models, machine learning models, and commonly used deep learning models. Data 
spanning fourteen days were used as input for the models to predict pest occurrences for the following day. All 
models underwent fifty rounds of training to ensure thorough learning, and Bayesian optimization was employed 
to fine-tune all parameters to their optimal combinations, allowing for a comprehensive evaluation and compari-
son of each model’s performance.

As can be seen from Table 3, compared to deep learning models, traditional statistical models such as ARIMA 
and SARIMA exhibit weaker performance in forecasting, especially in predicting planthopper infestations. The 
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higher MAPE values indicate that these models have limitations in capturing complex nonlinear relationships 
within the data. Overall, deep learning models demonstrate superior performance over traditional statistical 
models in this study, with the FCN-AGRU model achieving the best results in predicting rice pest infestations. A 
comparison of the prediction results of each model with actual pest occurrences is shown in Fig. 6. From May to 
September, the relationship between the actual records of rice leaf folder and brown planthopper occurrences and 
the predicted values from each model reveals that the GCN-AGRU model’s prediction curve aligns most closely 
with the actual data points, particularly at the peaks and troughs.

Table 3. Comparison results of rice pest prediction models

Model
Rice leaf roller Brown planthopper
MAPE RMSE MAE R2 MAPE RMSE MAE R2

SVM 42.181% 107.309 36.924 0.871 112.728% 132.135 50.292 0.226
ARIMA 39.026% 113.956 37.691 0.855 104.574% 123.207 39.863 0.325
SARIMA 22.156% 75.401 16.519 0.872 45.138% 81.566 17.678 0.355
LSTM 14.057% 138.274 37.277 0.958 13.912% 33.602 19.160 0.987
GRU 11.335% 112.308 29.668 0.973 14.644% 25.457 18.010 0.993
FCN-GRU 17.430% 118.512 38.176 0.970 16.257% 25.571 18.467 0.992
FCN-AGRU 22.932% 28.151 19.308 0.991 12.710% 18.097 12.408 0.996

Fig. 6. Comparison of model predictions with actual

The most effective model is applied to forecasts over a longer time span, specifically using fourteen days of 
historical data as input to predict pest occurrences for the next three and six days. When predicting for three and 
six days, the model is similarly trained for only 50 epochs, with parameters adjusted to their optimal combina-
tion.

Table 4. Model comparison results of FCN-AGRU in different days

Days
Rice leaf roller Brown planthopper
MAPE RMSE MAE R2 MAPE RMSE MAE R2

One day 22.932% 28.151 19.308 0.991 12.710% 18.097 12.408 0.996
Three days 353.458% 249.103 101.555 0.866 249.971% 245.448 144.589 0.307
Six days 297.591% 387.668 163.035 0.659 273.468% 204.998 126.903 0.294

The Table 4 shows that the FCN-AGRU model can make relatively accurate predictions for short-term fore-
casts, specifically for one-day predictions of pest occurrences. However, the performance of the model exhibits 
a significant decline when the forecasting period is extended to three and six days. Fig. 7 compares the quantity 
predictions of the FCN-AGRU model at different days with the actual quantities, further validating the results of 
the numerical analysis.
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Fig. 7. Comparison between the predicted and actual number of FCN-AGRUs in different days

4.3   GCN-AGRU Model Validation and Result Analysis

To meet the demand for multi-day forecasts of rice pest infestations, the interaction between local meteorolog-
ical conditions and the occurrence of pests is considered, and spatial information is introduced to compare the 
GCN-AGRU model with several other models. Firstly, for datasets with spatio-temporal characteristics, Yu et al. 
[20] proposed a Spatio-Temporal Graph Convolutional Network model (STGCN), which has achieved certain 
performance results in handling data with combined temporal and spatial features. Additionally, Wang et al. [21] 
proposed a further advanced network model, STGNN, which also shows performance improvements on data-
sets with spatio-temporal dependencies. Ablation experiments on agricultural pest datasets with spatio-temporal 
characteristics are conducted to verify the prediction effects and metric values under the same experimental con-
ditions. This experiment uses fourteen days of data as input to predict pest occurrences over the next three days, 
with Shaodong County as the prediction output region for the model. All models are trained for 200 rounds, and 
all parameters are tuned to their optimal combinations through Bayesian optimization methods. The specific 
comparison results are shown in Table 5.

Table 5. Comparison results of forecasting models

Model Rice leaf roller Brown planthopper
MAPE RMSE MAE R2 MAPE RMSE MAE R2

GRU 297.591% 387.668 163.035 0.659 273.468% 204.998 126.903 0.294
STGCN 296.404% 102.533 60.301 0.857 264.768% 156.140 75.613 0.818
STGNN 247.355% 88.627 51.742 0.881 240.113% 133.628 64.159 0.845
GCN-GRU 171.432% 68.502 38.177 0.921 196.297% 95.075 62.417 0.889
GCN-AGRU 122.952% 38.051 23.338 0.984 142.710% 72.037 47.158 0.906

The Table 4 indicates that integrating spatial information from different regions into the model can effectively 
enhance its performance. On the four key performance indicators—MAPE, RMSE, MAE, and R²—the GCN-
AGRU model, which incorporates spatial information, performs best in predicting the occurrences of rice leaf 
folder and brown planthopper infestations over the next three days. Models based on GRU are more effective 
in processing time series data, but their performance is limited when spatial features are also important. Both 
STGCN and STGNN models show significant improvements over the GRU model on these four key perfor-
mance indicators. Although both STGCN and STGNN models effectively handle spatio-temporal data, the GCN-
AGRU provides the best performance on this dataset. A comparison of the prediction results of each model 
with actual pest occurrences is shown in Figure 8. From May to September, the relationship between the actual 
records of rice leaf folder and brown planthopper occurrences and the predicted values from each model reveals 
that the GCN-AGRU model’s prediction curve aligns most closely with the actual data points, particularly at the 
peaks and troughs.
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Fig. 8. Comparison of Model Predictions with Actual

To assess the model’s generalizability across geographic distributions and its predictive effectiveness, a further 
analysis of the GCN-AGRU model’s performance in predicting rice pest infestations in different counties and 
cities is conducted. Table 6 shows the comparison results of prediction accuracy across different counties and cit-
ies, indicating that the GCN-AGRU model has smaller prediction errors in most counties and cities. The model’s 
predictions for rice leaf folder and brown planthopper are relatively accurate, with R² values generally exceeding 
0.8, demonstrating that the model can explain most of the variability and has high predictive accuracy. Fig. 9 
further displays the model’s performance, where the predicted curves of the model are consistent with the actual 
pest occurrences over most of the time periods.

Table 6. Comparison results of forecast accuracy in different counties and cities

Area
Rice leaf roller Brown planthopper
MAPE RMSE MAE R2 MAPE RMSE M AE R2

Hong Jiang City 55.776% 14.134 12.316 0.887 168.182% 76.277 58.127 0.817
Long Shan County 133.781% 59.906 36.847 0.931 61.396% 17.560 13.271 0.899
Shao Dong City 122.952% 38.051 23.338 0.984 142.710% 72.037 47.158 0.906
Ruan Jiang City 143.599% 43.268 24.579 0.902 60.104% 10.767 10.123 0.924

Fig. 9. Comparison of model GCN-AGRU’s prediction results of the next three days in different counties and cities with the 
actual ones
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To comprehensively assess the performance of the model, the GCN-AGRU model’s predictive capabilities 
at different phenological stages in Shaodong County were evaluated. Table 7 provides the prediction results for 
the first, third, and sixth days, and Fig. 10 illustrates the comparison between the model’s predictions at these 
stages and the actual occurrences. The table indicates that as the forecast duration increases, the prediction error 
(MAPE) gradually increases, and the ability to explain data variability (R²) also decreases. This is expected, as 
the uncertainty of predictions generally increases over time. Despite this, the R² value remains above 0.764 even 
at the sixth day, indicating that the GCN-AGRU model maintains a relatively high accuracy over longer forecast 
durations. The curves in the figure show that although the fluctuation of the prediction curves increases at the 
third and sixth days, the model still captures the main trends of the actual curves. The introduction of spatial fac-
tors has significantly enhanced the model’s performance. Although accuracy in multi-day predictions is affected, 
the GCN-AGRU model still maintains a low error range.

Table 7. Model comparison results of GCN-AGRU in different days

Days
Rice leaf roller Brown planthopper
MAPE RMSE MAE R2 MAPE RMSE M AE R2

One day 32.632% 29.021 18.344 0.996 62.716% 58.387 32.288 0.991
Three days 122.952% 38.051 23.338 0.984 142.710% 72.037 47.158 0.906
Six days 254.723% 274.713 133.259 0.836 266.21% 143.103 81.098 0.764

Fig. 10. Comparison of GCN-AGRU predicted results with actual numbers at one, three and six days

Fig. 11. Confusion matrix
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To enhance the practicality of the predictive model, a comprehensive review of the related forecasting stan-
dards for rice “double-migration pests” was conducted, and these pests were categorized into five levels of oc-
currence: light, slightly light, moderate, slightly severe, and severe. The three-day forecast results of the GCN-
AGRU model were classified and compared with the actual classification results. Fig. 11 displays the confusion 
matrices for the rice leaf folder and rice planthopper infestations. The results from the figure show that Level 1 
(light occurrence) predominates among the two types of pest infestations, with fewer samples at higher infesta-
tion levels. From the confusion matrix for rice leaf folder (Fig. 11(a)), it can be seen that the model is capable of 
accurately classifying Level 5, which represents severe infestations. The model achieved a weighted accuracy of 
80.4% and a weighted F1 score of 78.9%, demonstrating good performance in classification. For the classifica-
tion of rice planthoppers (Fig. 11(b)), the model’s weighted accuracy in predicting rice planthoppers was 0.928, 
with a weighted F1 score of 0.916, indicating favorable results in this classification task as well.

5   Conclusions

This study focuses on the occurrence of pest infestations during the rice growing stages in counties and cities of 
Hunan Province that experienced severe pest problems from 2010 to 2023. It integrates spatial information about 
rice pest infestations and employs the GCN-AGRU model for spatio-temporal forecasting. Comparative analyses 
confirm that the GCN-AGRU model outperforms other forecasting models on key performance indicators such 
as MAPE, RMSE, MAE, and R² in predicting rice pest infestations across multiple stages. In one-day forecasts, 
this model demonstrates high prediction accuracy, and although accuracy slightly decreases in three-day and six-
day forecasts, the model still effectively captures the main trends of actual pest occurrences and maintains a high 
R² value over longer forecast intervals. Further analysis using confusion matrices shows that the GCN-AGRU 
model exhibits high precision in classifying low-level infestations of rice leaf folder and rice planthopper and 
performs well in classifying less common, higher-level infestations. This study indicates that the GCN-AGRU 
model exhibits superior comprehensive performance both in time series analysis and in generalizing across geo-
graphical locations, with its robust spatio-temporal data handling capabilities, accurate prediction performance 
across various time scales, and precise classification of pest occurrence levels, providing a valuable reference for 
forecasting rice pest infestations.
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