
Journal of Computers Vol. 35 No. 4, August 2024, pp. 259-276
doi: 10.53106/199115992024083504018

259* Corresponding Author

Architecture Design of Embedded Software IP Knowledge Base

Zechang Xiong1, Cheng Chen2*, Haojie Feng1, Xiong Xu3, and Zhenyan Ji1

1 School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
{23126487, 23126424, zhyji}@bjtu.edu.cn

2 Transportation and Economics Research Institute, China Academy of Railway Sciences Corporation Limited,
Beijing 100081, China

chenchengcars@126.com

3 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
xux@ios.ac.cn

Received 19 July 2024; Revised 25 July 2024; Accepted 15 August 2024

Abstract. Effective management and reuse of existing embedded software knowledge is vital for enhancing
development efficiency. To better reuse embedded software knowledge, embedded software intellectual prop-
erty is designed. Embedded software IP refers to a collection of reusable knowledge entities with intellectual
property. Software IP knowledge base has been designed and implemented to store and manage software IP
efficiently. The architecture design based on the microservice architectural pattern makes the IP knowledge
base flexible and extensible. Specifically, considering software IP’s characteristics and usage requirements,
microservice boundaries has been defined and comprehensive architectural design and program implementa-
tion has been conducted. Within the knowledge base, IP design, IP management, IP view, retrieval and recom-
mendation, user management, and file management service of software IP are distributed to multiple service
instances. The approach reduces coupling between different modules, balances distributed loads within the
system, and enhances the overall capacity of the system. It lays the groundwork for the widespread applica-
tion of embedded software IP.

Keywords: knowledge base, software architecture, microservice architecture, software IP

1 Introduction

With the widespread application of embedded systems in consumer electronics [1], industrial automation [2],
transportation [3], and aerospace [4], the significance of embedded software has become increasingly prominent.
Embedded systems are specialized computing systems that perform dedicated functions or tasks within larger
systems. They are designed to operate with limited resources and often in real-time environments, making ef-
ficient and reliable software crucial. Faced with the continuously expanding application domains and evolving
technological demands, one of the challenges in embedded software development is how to improve efficiency,
ensure software quality, and reduce development costs simultaneously. In this context, the reuse of existing em-
bedded software knowledge becomes crucial.

Embedded software intellectual property (software IP) refers to reusable software entities protected by in-
tellectual property. These software IPs are rigorously validated components with specific functionalities, clear
context-dependent relationships, and well-defined port definitions. Efficient reuse of these knowledge entities is
essential for accelerating development processes, enhancing product quality, and lowering costs. However, due
to the complexity and diversity of software IP, effectively storing, managing, and reusing these entities poses an
urgent challenge.

To address this challenge, this study proposes a microservice-based software IP knowledge base architecture
design and implementation. The microservice architecture [5] divides a single application into a set of small,
loosely coupled services that coordinate and collaborate to provide comprehensive functionality. This approach
allows for independent development, deployment, and scaling of services, enhancing the system’s flexibility and
maintainability.

Following the principles of microservice, the architecture of this software IP knowledge base is divided into

260

Architecture Design of Embedded Software IP Knowledge Base

modules including software IP design, software IP management, software IP view, retrieval and recommendation,
user management, and file management. This architecture covers the entire lifecycle of software IP, from creation
and storage to application, providing comprehensive foundational support for software IP.

To further support the efficient management and use of software IP, we explore the storage method of software
IP. As software IP actually represents a software functional module with input and output ports, the software
IP knowledge base employs a graph database to store IP model information. In the graph, input ports, software
IP, and output ports correspond to nodes, and the names, types, and lengths of input ports and output ports cor-
respond to the properties of nodes while a relational database stores other descriptive data. This differentiated
storage approach, tailored to the data characteristics, efficiently captures relationships between software IPs, pro-
viding efficient knowledge retrieval and recommendations based on graphs.

In summary, the designed software IP knowledge base architecture, crafted to align with the attributes of soft-
ware IP, possesses features such as scalability, high reliability, and flexibility. It provides a platform to enhance
the efficiency of managing and using embedded software IP, establishing a robust foundation for innovation and
development in the future of embedded software domains.

2 Related Work

The microservice architecture is a method for developing an application as a set of small, autonomous services
that work together [6, 7]. Each service runs in its own process and communicates with other services via light-
weight mechanisms, often HTTP resource APIs. This approach contrasts with traditional monolithic architec-
tures [8], where all components and services are interwoven into a single application. In recent years, software
designed based on microservice architecture has exploded across various domains. The flexibility and scalability
offered by microservices have made them a preferred choice for developing complex and large-scale applications
[9].

In the realm of Smart Grid, Wang et al. [10] proposed a smart grid post-evaluation platform based on a micro-
service framework to visually display power generation data, enhancing the system’s modularity and maintain-
ability. Similarly, Yin et al. [11] presented a subgrid-oriented privacy-preserving microservice framework based
on deep neural network for detecting false data injection attacks, demonstrating the architecture’s capability to
handle complex security challenges in smart grids. In the e-commerce sector, Asrowardi et al. [12] adopted the
Design Science Research Method to explore microservice design for e-commerce services. Wu et al. [13] devel-
oped a B2B e-commerce platform using a microservice architecture, showcasing significant improvements in
system performance and maintainability. Ivaylo et al. [14] introduced microservice architecture into an intelligent
railway control system to improve service reliability. Yu et al. [15] designed an urban rail transit monitoring sys-
tem based on cloud computing and microservice, further validating the architecture’s versatility and effectiveness
in complex application environments.

In summary, the widespread application of microservice is evident in diverse fields, demonstrating its versatil-
ity and potential to address specific challenges within each domain. The microservice architecture has been prov-
en to have good scalability, stability, and scalability. Therefore, this paper explores the software IP knowledge
base based on microservice architecture.

3 Design of Software IP

Software intellectual property [16] is a collective term for reusable software knowledge entities with intellectual
property, as displayed in Fig. 1. It refers to rigorously validated software with specific functionality, clear con-
text-dependent relationships, and well-defined port definitions, representing a highly structured and validated
form of software. Essentially, software IP is a type of software functional module, with its input and output ports
constituting the port [17]. A well-structured software IP should comprehensively and accurately reflect key char-
acteristics throughout its creation and usage. It serves as an abstraction and aggregation of software knowledge
for developers. In summary, the representation model of software IP can be defined as the following triad:

(, ,).softwareIP KM FM IMP= (1)

261

Journal of Computers Vol. 35 No. 4, August 2024

Where KM represents the knowledge model, FM represents the formal model, and IMP represents the imple-
mentation. The knowledge model is a structured representation of knowledge within software IP, being the most
content-rich part. It is primarily described using informal natural language and graphical models. The formal
model employs formal language, while the implementation part mainly includes program code. From an abstract
perspective, the knowledge model is the most abstract and covers the entire lifecycle of software IP, making it
the most content-rich.

Fig. 1. Model of embedded software IP

The knowledge model assists developers and users in understanding and searching for software IP, enhancing
the effectiveness of software IP utilization. As an independently deployable and composable knowledge entity,
the most crucial aspect of software IP is its knowledge model. The knowledge model is structured information
with instructive significance, covering the entire lifecycle of software IP. The definition of knowledge model is as
follows:

(, ,).KM Basic Expert SoftDev= (2)

Where Basic denotes basic knowledge, Expert signifies domain expert knowledge and SoftDev refers to soft-
ware developing knowledge. The basic knowledge of software IP provides a general overview of the software IP,
encapsulating various attribute information inherent to the IP itself, which includes details such as the IP’s name,
ID, version, copyright ownership, authorship, keywords, and the application domain and category it belongs to.
The domain expert knowledge of software IP encompasses the development standards and protocols adhered to
by the IP, as well as the conditions for its use and typical scenarios in which it is applied. The software devel-
oping knowledge covers the entire lifecycle of software IP development, including documentation and records
related to requirements, design, implementation, testing, and maintenance.

Formal methods involve the comprehensive and systematic use of mathematical languages, techniques, and
tools to specify, develop, and verify software systems precisely [18]. The formal model describing software IP
using formal methods can significantly reduce the cognitive gap between creators and users, aiding in a correct
understanding of the meaning of software IP. The definition of formal model is as follows:

(, ,).FM Con Inv NonFun= (3)

Where Con stands for the contract, Inv represents invariant and NonFun signifies non-functional constraints.
From a formal perspective, the contract of software IP can be characterized by logical formulas that define the re-
lationship between its inputs and outputs, encapsulated within the form of a contract. Non-functional constraints
encompass various aspects such as operational environment constraints, resource constraints, and performance

262

Architecture Design of Embedded Software IP Knowledge Base

constraints. Operational environment constraints include requirements for the processor, compiler, and operating
system. Resource constraints pertain to the memory space occupied by the IP. Performance constraints involve
the response time and execution time of the IP during its operation. These constraints can be articulated through
first-order logical formulas. During the execution of software IP, it may involve state variables, and the invariant
of the software IP describes the constraints that the values of these state variables consistently meet throughout
the dynamic operation of the IP.

(,).IMP Interface Entity= (4)

The implementation of software IP consists of two parts: interface and entity. The interface describes the ex-
ternally visible part of software IP, with each software IP offering only one interface composed of input ports,
output ports, and input-output ports. Taking C language as an example, the interface can be declared in the .h file
of software IP code, and external environments can only access the interface through the .h file without knowl-
edge of the implementation details. The entity of software IP exists in the form of .c, representing the concrete
implementation of the software IP’s functionality.

The knowledge model, formal model, and implementation constitute the main components of the software IP.
In addition, each software IP entity also includes some explanatory documents. Specifically, the directory struc-
ture of a software IP is illustrated in Fig. 2 and primarily includes datasheet, knowledge structure, formal model,
implementation, and product.

The datasheet is presented in document form and provides a comprehensive overview of the software IP. It
encompasses essential details such as functionality, performance metrics, port descriptions, usage examples, and
simulation test data. This document serves as a reference guide for developers and users, offering crucial infor-
mation needed to effectively utilize the software IP.

The knowledge model, formal model, and implementation involve XML files, contracts, source code, etc. The
knowledge model captures the abstract representation of the software IP, the formal model provides a precise
specification, and the implementation details the actual code.

Fig. 2. Composition of software IP

263

Journal of Computers Vol. 35 No. 4, August 2024

The product is structured into instructions, tests, simulations, and maintenance. Instructional materials provide
informative documents for reference, guiding users on how to use the software IP effectively. Testing is repre-
sented by reports and test cases within the management view, ensuring the software IP meets its quality stan-
dards. Simulations encompass both simulation reports and simulation data, providing insights into the software
IP’s behavior under different conditions. Maintenance records are integrated into the maintenance section of the
management view, ensuring that the software IP can be effectively updated and managed over its lifecycle.

4 Architecture Design of Software IP Knowledge Base

4.1 Overall Architecture

The complexity and diversity of embedded software necessitate robust solutions for effective reuse and manage-
ment [19]. The emergence of embedded software IP provides a possible solution to this challenge. To facilitate
a more comprehensive and convenient utilization of software IP, we have developed the software IP knowledge
base. It assists users in managing, constructing, and utilizing software IP throughout its lifecycle—from creation
and storage to application.

The overall architecture of the embedded software IP knowledge base, as illustrated in Fig. 3, adopts the mi-
croservices architecture. This approach decomposes the system into multiple independent microservices, each
focusing on specific functional modules. This division enhances system maintainability and scalability. By de-
coupling services, independent development, testing, and deployment of each module are possible, significantly
improving agility and reliability.

The platform follows a Browser/Server architecture [20], requiring users to access the knowledge base through
a web browser. Upon sending a request, it undergoes identity verification by the API Gateway on the server side.
Once authentication is successful, the system distributes the request to the appropriate service through load-bal-
ancing mechanisms. The system consists of six main microservices: IP design service, IP management service, IP
view service, recommendation and retrieval service, user management service, and file management service.

 Due to the complexity of the software IP components, including IP models, descriptive text, files, etc. We uti-
lize diversified storage methods to better accommodate the diversity and complexity of software IPs, providing
comprehensive data support. Descriptive information about IPs is stored in the relational database MySQL, and
a graph database Neo4j is used to store structural information. A distributed file system HDFS is employed for
storing relevant files. Middleware is utilized to optimize database services, incorporating Redis for hot-cold data
separation, enhancing query efficiency, ElasticSearch for optimizing indexes and Kafka for message queue.

Furthermore, infrastructure services are built for the knowledge base, including Registry Center,
Configuration, Log Center, and Monitoring Center. The Registry Center facilitates the registration and discov-
ery of microservices, enabling efficient service communication. Configuration is responsible for managing and
dynamically configuring the configuration information of microservices. Log Center stores and manages logs
generated by the microservice system, aiding in tracking issues and analyzing system behavior. The Monitoring
Center monitors the operational status and performance metrics of the microservice system.

This architecture divides the knowledge base into independent microservices, enhancing system maintainabil-
ity. It employs diverse storage methods to meet the complex storage requirements of software IPs. Middleware
[21] is introduced to optimize service response times, and infrastructure services ensure the stability, scalability,
and maintainability of the knowledge base. Through these comprehensive optimization measures, the knowledge
base is ensured to meet the storage and usage requirements of software IPs, operating robustly in a complex and
dynamic environment.

4.2 Design of Data Storage

Considering the diverse composition of software IP information, which includes storage in .docx format for data-
sheets, IP descriptions, and descriptions of IP structures, we employ three types of databases for collaborative
storage and utilize three middleware solutions for acceleration. The diversity in databases ensures the knowledge
base effectively stores and manages various forms of software IP-related data. The three databases used in this

264

Architecture Design of Embedded Software IP Knowledge Base

system, as shown in Fig. 3 include the relational database MySQL, the non-relational database Neo4j, and the
distributed file system HDFS.

Fig. 3. Embedded software IP knowledge base software architecture

MySQL is responsible for storing structured textual data, and its entity-relationship model is illustrated in Fig.
4. The main entities include IP, User, File, Port, BasicView, DesignView, Valinfo, DevInfo, and ManageInfo.
Each IP has BasicInfo, DesignInfo, ValiInfo, DevInfo, and ManageInfo. Each IP entity encompasses:

Fig. 4. Entity relationship diagram

265

Journal of Computers Vol. 35 No. 4, August 2024

1) BasicInfo: Attributes like id, ipid, and field.
2) DesignInfo: Includes DFG, CDG, and Port information, with each DesignInfo containing multiple Ports,

each having attributes such as data_type, type, and length.
3) ValiInfo: Comprises Contract and Invariant details.
4) DevInfo: Covers development language, platform, and performance.
5) ManageInfo: Includes simulation and maintenance details.
User information consists of attributes like username, password, and each user, during IP creation or modifica-

tion, can upload or delete N files with properties like file URLs, upload times, and more.
Neo4j graph database is used to store the structural information of software IP models, with the graph com-

posed of:

{(, ,)}.G V E A= (5)

Where G represents a directed graph, V represents nodes, A expresses attributes of nodes, E represents rela-
tionships.

{ , , }.V I IP O= (6)

Nodes include input port nodes (I), software IP nodes (IP), and output port nodes (O).

{(,), (,)} , , , .i j k j i j k lE I IP IP O I I IP IP IP O O= ∈ ∈ ∈ (7)

Relationships indicate connections from input to IP for input relationships and from IP to output for output re-
lationships.

{ , }.P IPA Attr Attr= (8)

Attributes of nodes include software IP attributes (name, ID, and functional description) and input/output port
attributes (names, types, meanings).

The distributed file system HDFS provides storage and retrieval for software IP-related files, including XML
files, datasheets, source code, etc. Collaborative storage through three types of databases enables the system to
leverage the strengths of each database when handling various types of software IP data, enhancing overall sys-
tem performance.

The knowledge base also employs Redis as a caching database to store hot data and improve system perfor-
mance, including recent user query data and user tokens. ElasticSearch is used to optimize indexing, supporting
users in real-time full-text searches and reindexing descriptive text of software IPs, such as keywords, application
scenarios, and fields. Kafka is employed reliable queue that holds messages until they are consumed. It ensures
no data loss with features like replication and persistent storage.

The practice of collaborative storage across multiple databases greatly enhances the system’s querying capa-
bilities, allowing for a more rapid response to user demands and significantly improving the data response speed.
However, this collaborative storage presents challenges regarding data consistency. For instance, partial descrip-
tive information of software IP is stored in both Neo4j and MySQL. When data in MySQL is updated, the corre-
sponding changes must be synchronized with Neo4j.

To address this issue, we have implemented a multi-database collaborative model based on the Kafka message
queue to ensure eventual consistency of data. The system adopts an eventual consistency principle, which allows
for temporary data inconsistencies immediately after a change occurs but guarantees that data will eventually
converge to a consistent state in the absence of further updates.

266

Architecture Design of Embedded Software IP Knowledge Base

Fig. 5. Multi-database collaborative process

The multi-database collaborative process of IP update service is shown on Fig. 5. The content updated by
user will be treated as a message entering the message queue and consumed by the IP table in MySQL. We uti-
lize Change Data Capture (CDC) tools to monitor database change operations and synchronize these changes to
Kafka’s message queues. When a database change occurs, the CDC tool captures these changes and publishes
messages to specific Kafka Topics. Each consumer subscribes to the relevant Kafka Topics receives the change
information and applies the changes to its local data storage. During the synchronization process, if a conflict is
detected, it is resolved using timestamps and version control. After each consumer has applied the data changes,
the system performs data verification to ensure that the changes have been correctly applied and that data con-
sistency is maintained. If an error occurs during the synchronization process, the system executes a failure retry
mechanism. If the retries fail multiple times, a rollback operation is performed to ensure data consistency.

We model the data synchronization state of a multi-database system as a Markov chain [22]. The state set S =
{s0, s1, ...sn} represents different synchronization levels, with s0 as the initial state and sn as the fully synchronized
state. The transition probability from state si to state si is denoted as Pij , forming the transition probability matrix
P:

00 0

0

.
n

n nn

P P
P

P P

 =

 (9)

To demonstrate the system’s long-term reliability, we find the steady-state probability distribution π, which
satisfies:

.Pπ π= (10)

0
1.n

ii
π

=
=∑ (11)

For a simplified example with three states (initial s0, partial s1, and fully synchronized s2), we determine the
transition probabilities as follows:

0.6 0.3 0.1
0.2 0.5 0.3 .
0.0 0.05 0.95

P

 =

 (12)

267

Journal of Computers Vol. 35 No. 4, August 2024

We solve for π from

0 0 1

1 0 1 2

2 0 1 2

0 1 2

0.6 0.2
0.3 0.5 0.05
0.1 0.3 0.95

1.

π π π
π π π π
π π π π
π π π

= +

= + +

= + +

+ + =

 (13)

Solving these, we might get: π = (0.033,0.017,0.95). it indicates a long-term probability of approximately 95%
for the system to reach full synchronization. Thus, the model demonstrates the long-term reliability of multi-da-
tabase collaboration, showing a high probability of achieving full synchronization over time. This method can be
extended to more complex systems by adjusting state definitions and transition probabilities accordingly.

Through this collaborative model, the system can effectively leverage the advantages of various databases and
improve the system’s performance and response speed through caching mechanisms. While maintaining high
performance, it effectively manages data consistency, ensuring the reliability of the system and the accuracy of
the data. This comprehensively supports the data needs of software IP.

5 Design and Implementation of Microservice

Based on the idea of microservice architecture, we divide the software IP knowledge base into six services, de-
fined as follows:

 , , , & , , .Knowledge Base Design Manage View R R User File= (14)

Where Design, Manage, and View represent the design, management, and display services of software IP,
R&R represents the retrieval and recommendation service based on the knowledge graph, User represents the
user management service of knowledge base, and File represents the file management service of the knowledge
base. These application services support the knowledge base together. To construct a stable and scalable software
IP knowledge base, we selected Spring Cloud as our microservices framework and MyBatisPlus for database
connections. Given the high access volumes for the software IP Design Service, Management Service, View
Service, and Recommendation and Retrieval Service, multiple instances of these services are deployed. In con-
trast, the User Management and File Management Services, which are less frequently accessed, have only one
instance each.

In terms of microservices components, we have adopted Eureka for service registration and discovery. Eureka
Server manages the registration information of each service, enabling automatic service discovery and registra-
tion. For configuration management, we use Spring Cloud Config to centrally manage configuration information.
It provides configuration files to each microservice through the configuration server, allowing the system to mod-
ify configuration information without redeploying services, thereby enhancing system maintainability. The Log
Center utilizes Logcenter as a solution for centralized collection, storage, and analysis of log information gener-
ated by applications. Logcenter can be used to manage logs from all microservices, facilitating troubleshooting,
performance monitoring, and security auditing. For system monitoring, Spring Boot Admin is used as a monitor-
ing tool, providing a web interface for monitoring the operational status and performance metrics of the system.
To ensure the security of the system, we have adopted an API Gateway as the entry point for the microservices
system. We use Kafka as the message queue between microservices, offering a highly reliable and high-through-
put messaging mechanism that helps us achieve asynchronous communication and decoupling between microser-
vices. Finally, we employ Docker for containerized deployment to achieve a lightweight and portable deployment
solution. By packaging each microservice into an independent Docker container, we can quickly and reliably
deploy the system, which greatly simplifies the system’s operational and maintenance tasks.

5.1 Software IP Design Service

The Software IP design service is a crucial service of software IP. Users complete the design of software IP by
filling in form content and uploading files on the frontend interface, shown in Fig. 6. The design form of the

268

Architecture Design of Embedded Software IP Knowledge Base

software IP case is divided into five parts: Datasheet, Knowledge Model, Formal Model, Implementation, and
Product.

1) Datasheet: Consists of the user-submitted software IP’s DOCX file, containing information such as the
software IP name, interface description, and functional introduction.

2) Knowledge Model: Requires users to fill in basic knowledge, domain expert knowledge, and software
development process knowledge.

3) Formal Model: Users upload a description file using formal methods for contracts, non-public constraints,
and IP invariants.

4) Implementation: Users upload source code.
5) Product: Users upload documentation, testing, simulation, and maintenance information.

Fig. 6. Page of IP design

After filling out the design forms, the backend verifies the content of each form against the standard. Once
verification passes, the backend saves all the information of the IP to the database and writes all information into
an XML document, generating the corresponding directory structure. Through the semi-structured XML docu-
ment, we can extract the text content or convert it to a certain degree of structured data, making it more flexible
for downstream uses.

5.2 Software IP Management Service

The software IP management service is the core service of the system, responsible for storing and managing the
model information and descriptive information of software IP. The software IP knowledge base adopts the Neo4j
graph database to store the model information of software IP and MySQL to store the descriptive information. In
the software IP model, input ports, software IP, and output ports correspond to nodes in the graph. The properties
of input ports and output ports, such as names, types, lengths, and meanings, correspond to the attributes of the
nodes. The identification part of the knowledge model corresponds to the attributes of the software IP. The soft-
ware IP management service implements functions such as creating, storing, modifying, and deleting software
IPs. By combining graph databases and relational databases, efficient management of software IP models and
descriptive content is achieved.

269

Journal of Computers Vol. 35 No. 4, August 2024

5.3 Software IP View Service

Software IP view service displays a complete software IP through various views to meet user viewing and analy-
sis needs in different scenarios. The IP view is divided into six types of view. The Full View is editable, while the
other views are read-only. The information contained in each view is as follows:

1) Basic View includes basic information about the software IP, such as type, name, and functional descrip-
tion.

2) Design View includes both basic and design information on the software IP. Design information compris-
es port details, parameter information, and flowcharts.

3) Verification View encompasses basic, design, and verification information of the software IP. Verification
information includes contracts, non-functional constraints, and invariants.

4) Development View comprises basic, design, and development information of the software IP.
Development information includes programming language, platform environment, performance charac-
teristics, representation form, and source code.

(5) Management View covers management information of the software IP, including basic information, in-
structions, testing, simulation, and maintenance details.

(6) The Full View contains all information when creating an IP, with a structure like the IP design tool. In the
Full View, users can modify IP information.

Fig. 7. IP basic view

Different views can be utilized in various downstream application scenarios. The availability of multiple
views allows better adaptation to downstream tasks. The view service presents the structure and attributes of
software IPs through a graphical interface, providing an intuitive user experience. In Fig. 7, using the example of
the “Attitude Calculation” IP, its basic view is displayed. The basic presenting the fundamental elements that a
software IP as a knowledge entity should encompass. Other views follow a similar format to the basic view, pro-
viding relevant information displays.

270

Architecture Design of Embedded Software IP Knowledge Base

5.4 Retrieval and Recommendation Service

The retrieval and recommendation service provides graph-based search and recommendation services. Graph
structures are inherently suitable for expressing and querying data with complex relationships. Using a graph
database to store the model information of software IP provides better support for search and recommendation
functionality, outperforming traditional keyword matching methods.

Search is achieved by describing query patterns using Cypher, specifying conditions for nodes and relation-
ships, and their topological structures. Fig. 8 illustrates the sequence diagram for the search functionality. When
the user inputs a search keyword and clicks the search button, the frontend sends a URL request. Upon receiving
the request, the IPSearchController layer on the server invokes IPSearchService. Initially, the service assembles
a query statement based on the user’s search content. Subsequently, it checks whether the data is already present
in the Redis cache by using the query statement as a key. If there is no cache hit, the service performs a query on
Neo4j, writes the retrieved data into the Redis cache, and simultaneously returns the data to the frontend for dis-
play.

Fig. 8. Sequence diagram of search IP search service

The recommendation algorithm initially utilizes Cypher to query user history behavior and extract relevant
software IP graph structure information. It then utilizes the BERT [23] model to extract semantic features from
both the user’s historical behavior and the information of software IPs. The BERT model transforms textual data
into high-dimensional semantic representations, capturing the semantic information between user behaviors and
software IPs. Subsequently, the system constructs a collaborative filtering model [24] based on user preferences
and the similarity between software IPs. This model utilizes the user-item matrix and similarity information to
predict the degree of user preference for uninteracted IPs by learning the common preferences among users and
the associations between software IPs. By integrating the semantic features extracted by the BERT model and the
user preferences and item associations learned by the collaborative filtering model, the system can provide users
with more personalized and accurate recommendations.

271

Journal of Computers Vol. 35 No. 4, August 2024

5.5 User Management Service

The user management service is responsible for handling various aspects related to user accounts, authentica-
tion, and authorization within the software IP knowledge base. Users are categorized into administrators and
regular users. Due to the privacy concerns associated with software IP, the new user registration is banned. Only
administrators are permitted to add new users to the system, generate random passwords for them, and manage
their roles and permissions. During the login process, user identities are verified, and upon successful validation,
time-limited tokens are issued. Access policies are enforced based on user roles, managing user sessions, and
permissions. Additionally, security protocols will be implemented to safeguard user information, and user activi-
ties will be monitored and logged to ensure security.

5.6 File Management Service

The file management service is implemented based on HDFS and is primarily responsible for the management
and storage of file resources in the software IP knowledge base. The services provided include: uploading, down-
loading, storing, and retrieving files, viewing the historical version, etc. It allows users to upload new file re-
sources to the knowledge base and supports the download of stored files, including XML files, datasheets, source
code, and other software IP-related files. The service supports file version management, ensuring the tracking and
maintenance of different versions of the same file. This helps users understand the evolution of files and revert to
previous versions when necessary. The implementation includes periodic backup of files to prevent loss or dam-
age and supports file recovery from backups when needed. The service records the operational history of files,
including upload, download, modification, etc., for audit and monitoring of file usage.

6 Evaluation

6.1 Functional Testing

Functional testing is essential to ensure that each component of the software IP knowledge base performs its in-
tended functions correctly. The primary focus is on verifying the correctness of the implemented features and the
seamless interaction between different microservices. This system comprises six services with over fifty API and
rich functionalities. During testing, we will focus only on the main API, and will not present the testing of other
functionalities here. The following functional tests were conducted:

Table 1 outlines the functional test cases for the IP Design Service. It includes details on how each API was
tested, the expected outcomes, and the actual results. The tested API including Add IP, IP Form Validation,
Obtain IP Graph Structure. In the context of the Add IP API, the functionality was evaluated by populating the IP
design form with all necessary information. This form submission was intended to create a new IP record within
the system. The expected result was that the IP would be successfully generated and stored, which aligns with
the observed outcome where the IP was indeed created as anticipated. The IP Form Validation API was tested
by entering a range of inputs into the IP design form, encompassing both valid and invalid data. The test results
confirmed that the API correctly validated the inputs and provided the expected validation messages, thereby en-
suring data integrity.

Table 1. IP design service test cases

API Implementation steps Expected results Actual results

Add IP Filling the IP design form Create IP successfully Same as expected results

IP form validation Fill in the IP design form with
correct and incorrect inputs

Correctly output the
validation results for each input

Same as expected results

272

Architecture Design of Embedded Software IP Knowledge Base

Table 2 describes the functional test cases for the IP Management Service, detailing the API actions, expect-
ed results, and actual outcomes. The tested API including the CRUD of software IP. The IP Download API was
tested by initiating the download of a ZIP file that encompasses the entire IP package. The test confirmed that the
download process worked as intended. The Search IP API was evaluated by entering various keywords associ-
ated with IP names to retrieve relevant information. The test results showed that the API accurately performed
the search and provided information on all items meeting the specified criteria, as expected. For the Delete IP
API, the test involved passing the ID of a specific IP item to be removed. The expected functionality is that the
item would undergo pseudo-deletion within the database, meaning that it would be marked as deleted but not
physically removed. The results indicated that the pseudo-deletion process was executed successfully, aligning
with the anticipated outcome. In testing the Modify IP API, the process involved submitting updated information
for an existing IP item. The actual results demonstrated that the API effectively updated the IP information as re-
quired, meeting the expected results. The Recommend IP API was assessed by generating a recommendation list
based on user preferences. The test confirmed that the recommendation system functioned correctly, producing a
list of IPs that aligned with user specifications.

Table 2. IP management service test cases

API Implementation steps Expected results Actual results

IP Download Download the Zip file for a
whole IP

Download successfully Same as expected results

Search IP Enter the keywords of the IP
name

Search for information on all
items that meet the criteria

Same as expected results

Delete IP Pass the ID of the deleted item
for item deletion

Pseudo-deletion of items in
databases successful

Same as expected results

Modify IP Pass in the modified item in-
formation for modification

Modified successfully Same as expected results

Recommend IP Generate IP recommendation
list based on users

Return a list of IPs related to
user

Same as expected results

Table 3 outlines the functional test cases for the View Service, including API actions, expected results, and ac-
tual outcomes. The Get IP View API was assessed by navigating to the Basic view page of the IP system. The test
verified that accessing this view successfully returned the expected IP details, confirming that the API operates
as intended. The Obtain Node of IP Graph Characteristics API was evaluated by invoking it to retrieve detailed
characteristics related to specific nodes within the IP graph. This API should return a list of attributes associat-
ed with the selected node. The test results indicated that the API accurately provided the list of characteristics,
meeting the expected outcome. For the Obtain IP Graph Structure API, the test involved invoking the interface
to retrieve and present the graph structure of the current IP. The anticipated outcome was a clear and accurate
graphical representation of the IP structure, which was successfully achieved according to the test results.

Table 3. IP view service test cases

API Implementation steps Expected results Actual results

Get IP View Open the Basic view page Return IP View Same as expected results
Obtain Node of IP Graph
Characteristics

Call the interface to show
node in detail

Return a list of characteristics
related to a node

Same as expected results

Obtain IP Graph Structure Call the interface to show IP
graph in basic view

Obtain the graph structure of
the current IP and visually
display it

Same as expected results

The test results in Table 4 indicate that the back-end successfully retrieves the necessary parameters and files
for computation based on the message content sent by the front-end. The system effectively writes the correct re-
sults into the database and storage while handling errors or messages requiring waiting in an appropriate manner.
This aligns with the intended design goals and fulfills the system requirements.

273

Journal of Computers Vol. 35 No. 4, August 2024

Table 4. User service test cases

API Implementation steps Expected results Actual results

Login Enter the username and pass-
word

Successfully logged in and
return a token

Same as expected results

Logout Click the log out button Pop up system Same as expected results

Super administrator modi-
fies user permissions

Select a new permission level
for the user

Prompt for successful change,
change user permissions

Same as expected results

Limited time for adminis-
trators to modify tokens

Enter the new limited time Prompt for successful change,
change token validity period

Same as expected results

The Login API was examined by providing valid credentials, including a username and password. The test re-
sults indicated that the API performed as expected by successfully logging the user in and returning the appropri-
ate authentication token. For the Logout API, the test involved clicking the logout button to end the user session.
The results confirmed that the API correctly displayed the logout prompt and successfully terminated the session,
aligning with the anticipated outcome. The Super Administrator Modifies User Permissions API was tested by
selecting a new permission level for a user. The test verified that the system accurately processed the permission
change request and provided a prompt confirming the successful modification. The outcome was consistent with
the expected functionality. Testing the Limited Time for Administrators to Modify Tokens API involved entering
a new validity period for the tokens used by administrators. The results demonstrated that the API effectively
adjusted the token validity period and returned a confirmation of the successful change, meeting the expected re-
sults.

6.2 Performance Test

To substantiate the efficacy of our software IP knowledge base architecture, we conducted a series of perfor-
mance tests. Performance testing assesses the system’s responsiveness, throughput, scalability, and reliability
under various loads and conditions. Apache JMeter was used to simulate different user scenarios and measure the
system’s performance. The knowledge base is evaluated by Apache JMeter.

We conducted stress evaluations on two scenarios. The first scenario involved using the GET method to re-
quest a list of IPs, while the second scenario involved using the POST method to upload a newly designed IP.
The tests were conducted using Apache JMeter, as depicted in Table 5, with the results summarized in Table 6.

Table 5. Apache JMeter parameters

Performance/Scenario Get IP list (Get) Design IP (Post)
Threads (users) 1000 200
Ramp-up period (seconds) 1 5
Loop count 2 5

Table 6. Evaluation results

Performance/Scenario Get IP list (Get) Design IP (Post)
Sample 2000 1000
Average 74 101
Median 20 122
Min 13 14
Max 257 246
Error % 0.00% 0.05%
Throughput 84.8 91.0/sec
Received KB/s 437.87 31.44
Sent KB/s 19.45 2419.81

274

Architecture Design of Embedded Software IP Knowledge Base

For the Get IP List request, the system demonstrated excellent responsiveness, with an average response time
of 74 ms and a median response time of 20 ms. The error rate was 0.00%, indicating that all requests were suc-
cessfully processed. The throughput was 84.8 requests per second, highlighting the system’s ability to handle
high concurrent loads efficiently. Fig. 9 shows the delay value when requesting an IP list using the GET method.
It lists delay samples for 2000 operations under different sequence operations. This can help evaluate the re-
sponse time of the system under different operating loads, thereby understanding system performance. Fig. 10
shows the cumulative distribution function values of GET requests. It provides the relative frequency of requests
under different delay values, and through PDF values, we can understand the probability of requests completing
within a specific delay range. This distribution can help us understand the consistency and reliability of system
performance.

Fig. 9. Latency values for the Get request

Fig. 10. PDF values for the Get request

For the Design IP request, the average response time for submitting new software IP designs was 507 ms,
with a median response time of 59 ms. The error rate was 0.05%, indicating a very low failure rate in handling
POST requests. The throughput was 91.0 requests per second, demonstrating the system’s capability to manage
frequent write operations effectively. Fig. 11 shows the latency values over a sequence of 1000 operations. The
x-axis represents the sequence of operations, while the y-axis shows the latency in milliseconds (ms) on a loga-
rithmic scale. The latency values exhibit significant variation at the beginning, with a notable peak, followed by a
more stable region with occasional spikes. This indicates that the system experiences varying latency, with some
operations taking significantly longer than others. Fig. 12 represents the Probability Density Function (PDF) of
latency values for a sample of 1000 operations. The x-axis denotes the latency values in milliseconds (ms), while
the y-axis represents the probability. The distribution shows that most latency values are concentrated around a
certain range, with the highest probability density occurring at lower latency values. The probability decreases as
the latency values increase, indicating that higher latency values are less frequent.

The data presented in Table 5 highlight the system’s performance metrics, including response times and
throughput, which are essential benchmarks for the reliability of the architecture. The successful completion of
these stress tests with satisfactory results reinforces our confidence in the architecture’s design.

275

Journal of Computers Vol. 35 No. 4, August 2024

Fig. 11. Latency values for the Post request

Fig. 12. PDF values for the Post request

7 Conclusion

This work presents the design and implementation of an embedded software IP knowledge base based on micro-
service architecture. Initially, we explored the concept and structure of software IP. Subsequently, we designed
a knowledge base system suitable for storing software IP, considering its characteristics. By adopting a micro-
service architecture, the system decouples and independently deploys various functional modules, enhancing
system flexibility and maintainability. By incorporating graph databases, relational databases, and distributed
file systems, the system efficiently stores and retrieves both structured and unstructured data of software IP.
Additionally, leveraging middleware such as Redis caching, ElasticSearch full-text search, and Kafka message
queues further improves the system’s response speed and throughput. Performance testing results indicate that
the proposed knowledge base architecture offers significant advantages in terms of data consistency, retrieval effi-
ciency, and system scalability. The proposed microservice-based embedded software IP knowledge base provides
a solid platform for improving the efficiency of embedded software development and knowledge reuse. Future
research will further optimize the retrieval and recommendation algorithms of the knowledge base and explore
performance enhancements and functional expansions in more application scenarios.

8 Acknowledgement

This research was supported by the National Natural Science Foundation of China under Grant (No. 62192732).

References

[1] I. McLoughlin, Reverse engineering of embedded consumer electronic systems, in: Proc. 2011 IEEE 15th International
Symposium on Consumer Electronics (ISCE), 2011.

276

Architecture Design of Embedded Software IP Knowledge Base

[2] A. Malinowski, H. Yu, Comparison of embedded system design for industrial applications, IEEE transactions on indus-
trial informatics 7(2)(2011) 244-254.

[3] J.C. Castellanos, F. Fruett, Embedded system to evaluate the passenger comfort in public transportation based on dy-
namical vehicle behavior with user’s feedback, Measurement 47(2014) 442-451.

[4] J. Craveiro, J. Rufino, C. Almeida, R. Covelo, P. Venda, Embedded Linux in a partitioned architecture for aerospace ap-
plications, in: Proc. IEEE/ACS International Conference on Computer Systems and Applications, 2009.

[5] J. Thönes, Microservices, IEEE software 32(1)(2015) 113-116.
[6] N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice architecture, in: Proc. 2016 IEEE 9th

international conference on service-oriented computing and applications, 2016.
[7] T. Cerny, M.J. Donahoo, M. Trnka, Contextual understanding of microservice architecture: current and future direc-

tions, ACM SIGAPP Applied Computing Review 17(4)(2018) 29-45.
[8] G. Blinowski, A. Ojdowska, A. Przybyłek, Monolithic vs. Microservice Architecture: A Performance and Scalability

Evaluation, IEEE Access 10(2022) 20357-20374.
[9] Z.-L. Wang, S.-Y. Zhu, J.-G. Li, W. Jiang, K.K. Ramakrishnan, Y.-F, Zheng, M. Yan, X.-H, Zhang, A.X. Liu,

Deepscaling: microservices autoscaling for stable cpu utilization in large scale cloud systems, in: Proc. the 13th
Symposium on Cloud Computing, 2022.

[10] J. Wang, R.-Q. Ouyang, W. Wen, X. Wan, W. Wang, A. Tolba, X.-G. Zhang, A post-evaluation system for smart grids
based on microservice framework and big data analysis, Electronics 12(7)(2023) 1647-1665.

[11] X.-F. Yin, Y.-M. Zhu, J.-L. Hu, A subgrid-oriented privacy-preserving microservice framework based on deep neural
network for false data injection attack detection in smart grids, IEEE Transactions on Industrial Informatics 18(3)(2021)
1957-1967.

[12] I. Asrowardi, S.D. Putra, E. Subyantoro, Designing microservice architectures for scalability and reliability in e-com-
merce, in: Proc. 2nd International Conference on Applied Science and Technology, 2020.

[13] M. Wu, X.-Q. Ding, R.-C. Hou, Design and implementation of B2B E-commerce platform based on microservices ar-
chitecture, in: Proc. 2nd International Conference on Computer Science and Software Engineering, 2019.

[14] I. Atanasov, V. Vatakov, E. Pencheva. A Microservices-Based Approach to Designing an Intelligent Railway Control
System Architecture 15(8)(2023) 1566-1588.

[15] S.-W. Yu, H.-L. Chang, H.-J, Wang, Design of cloud computing and microservice-based urban rail transit integrated su-
pervisory control system plus, Urban Rail Transit 6(4)(2020) 187-204.

[16] M.-F. Yang, B. Gu, Z.-H. Duan, Z. Jin, N.-J. Zhan, Y.-W. Dong, C. Tian, G. Li, X.-G. Dong, X.-F. Li, Intelligent pro-
gram synthesis framework and key scientific problems for embedded software, Chinese Space Science and Technology
42(4)(2022) 1-7.

[17] I. Crnkovic, S. Sentilles, A. Vulgarakis, M.R. Chaudron, A classification framework for software component models,
IEEE Transactions on Software Engineering 37(5)(2010) 593-615.

[18] C.A.R. Hoare, Unified theories of programming, Mathematical methods in program development 158(1997) 313-367.
[19] D. Flemström, D. Sundmark, W. Afzal, Vertical test reuse for embedded systems: A systematic mapping study, in: Proc.

41st Euromicro Conference on Software Engineering and Advanced Applications, 2015.
[20] M.-S. Jin, C.-L. Qiu, J. Lim, The designment of student information management system based on B/S architecture, in:

Proc. 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2012.
[21] W. Emmerich, Software engineering and middleware: a roadmap, in: Proc. the Conference on the Future of Software

Engineering, 2000.
[22] X. Cheng, Z. Jin, H.-L. Yang, Optimal insurance strategies: A hybrid deep learning Markov chain approximation ap-

proach, ASTIN Bulletin 50(2)(2020) 449-477.
[23] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding, in: Proc. 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2019.

[24] L.-X. Zou, L. Xia, Y.-L. Gu, X.-Y. Zhao, W.-D. Liu, J.-X. Huang, D.-W. Yin, Neural interactive collaborative filtering,
in: Proc. the 43rd international ACM SIGIR conference on research and development in information retrieval, 2020.

