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Abstract. After significant investments of time and resources, the accuracy of deep neural network (DNN) 
models has reached commercially viable levels, leading to their increasing deployment on cloud platforms 
for commercial services. However, ongoing research indicates that the challenges facing deep neural network 
models are continually evolving, particularly with various attacks emerging to compromise their integrity. 
Deep neural networks are susceptible to poisoning attacks and backdoor attacks, both of which involve mali-
cious fine-tuning of the deep models. Malicious fine-tuning can lead to unpredictable outputs from deep neu-
ral network models. Although at-tempts have been made to address this issue, these solutions often increase 
model complexity or diminish model performance. We propose a black-box watermarking technique based on 
trigger image sets, which can effectively detect malicious fine-tuning while also enabling copyright authenti-
cation. This watermarking technique builds upon black-box watermarking methods, leveraging trig-ger image 
sets and utilizing a two-stage alternating training approach to fine-tune the model. During training, a novel 
loss function is employed to optimize the trigger images, thereby embedding the watermark while preserving 
the model’s original classification capabilities. The proposed watermarking model is highly sensitive to ma-
licious fine-tuning, resulting in unstable classification outcomes for trigger images. Ultimately, by inputting 
trigger image sets and analyzing the output of the watermarking model, the integrity of the deep neural net-
work model can be verified. Experimental results demonstrate the effectiveness of this approach in detecting 
the integrity of DNN models.
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1   Introduction

With the development of computer technology, Deep Learning (DL) has made tremendous progress in various 
fields such as computer vision [1], semantic recognition [2, 3] and natural language processing [4]. After signif-
icant investments of time and resources, the accuracy of Deep Neural Network (DNN) models has now reached 
commercially viable levels, leading to their increasing deployment on cloud platforms for business services. 
However, ongoing research indicates that the challenges facing deep neural network models are continually 
evolving, particularly with various attacks emerging to compromise their integrity. This paper presents a novel 
black-box watermarking technique based on trigger image sets, which can effectively detect whether a deep neu-
ral network (DNN) model has been fine-tuned and ensure the fidelity of the model’s performance. A set of trigger 
images is constructed based on user-specific keys, and the pre-trained DNN model is fine-tuned by alternately 
classifying normal images and trigger images to embed the watermark. In the verification stage, the integrity of 
the model is validated by analyzing the classification results of the model with the trigger image set as input. 
During the model embedding stage, both the generative network and classification network are simultaneously 
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employed to alternately train the trigger image set, thus enhancing the accuracy of black-box trigger set detec-
tion. Compared to other black-box watermarking methods, this approach provides a new and effective solution 
for verifying the integrity of DNN models under commercial black-box systems.

Cybersecurity techniques are also evolving with the development of DNN models, but so are the attack meth-
ods against the models. DNN models besides face model modification attack methods such as fine-tuning [5], 
pruning, compression and model retraining. They are also vulnerable to data poisoning and backdoor attacks [6]. 
Data poisoning [7] reduces the accuracy of the model by contaminating the training data to bias the model’s clas-
sification of good and bad inputs. Backdoor attacks achieve misdirection of model classification through secret 
triggers. Both attacks involve malicious fine-tuning of DNN models. And this kind of fine-tuning is more insidi-
ous than model modification and difficult to detect directly.

After analyzing existing literature, it has been found that deep neural networks are susceptible to data poison-
ing and backdoor attacks. Both involving malicious fine-tuning of the model. To date, most published studies 
have focused on robust watermarking techniques for protecting the copyrights of DNN models. Robustness 
implies that these methods are insensitive to changes aimed at removing embedded watermarks. In summary, 
detecting whether a deep neural network model has undergone fine-tuning is the key problem addressed in this 
paper. We aim to achieve both verification and copyright authentication. We will transplant the concept of sen-
sitivity to content modifications into deep neural networks and integrate black-box watermarking techniques to 
address the aforementioned issues.

Black-box watermarks rely solely on input-output analysis. However, the integrity of the model greatly influ-
ences the watermark’s output. Particularly, when the model faces attacks like fine-tuning or tampering by attack-
ers, it may perform similarly to the original model. Yet, it could output different results when given specific back-
door data, hindering model validation. Meanwhile, we found that the training trigger set can also have an impact 
on the DNN model. Drawing inspiration from fragile watermarking, we contemplate the feasibility of utilizing 
black-box watermarking as a foundation. This entails analyzing the outcomes of the trigger image set to ascertain 
whether the model has undergone fine-tuning. The contributions of this paper include the following:

1) We present a novel black-box scheme for detecting model integrity using trigger set images, offering a 
fresh and efficient approach for verifying the integrity of DNN models within commercial black-box sys-
tems.

2) The embedding stage of the model utilizes both the generative network and classification network con-
currently, alternating the training of trigger set images. This approach enhances the accuracy of detecting 
trigger sets in black-box scenarios.

3) The watermarking scheme adeptly identifies whether the DNN model has undergone fine-tuning, ensuring 
the fidelity of its performance.

2   Related Work 

This section gives a detailed introduction to the work related to parameter-based watermarking and back-
door-based watermarking. Parameter-based watermarking enhances comprehension of the structure of DNN 
models. On the other hand, backdoor-based watermarking delves into the evolutionary history of black-box wa-
termarking, alongside the contributions made by previous researchers. The approach used in this paper involves 
the use of sample adjustment to achieve a black-box model. So this section gives an introduction to dataset ad-
justment as well, describing the development of having an impact on the model by adjusting the dataset and the 
related work that has been done. 

2.1   Parameter-based Watermarking

DNN models have a large number of parameters in them. These parameters can store a large amount of informa-
tion other than the main task and can be utilized for DNN model watermark embedding [8]. Y. Uchida et al. [9] 
proposed the usage of watermarks for the first time in the DNN model to protect DNN copyright, and implement-
ed an algorithm to embed watermark information in the model parameter weights during the training process. 
Kuribayashi et al. [10] proposed a quantifiable watermark embedding method based on the weights of the fully 
connected layer. This method exploits the fact that the weight of the DNN model varies greatly when parame-
ter-based watermarking is added to the model. The existence of watermarks can be detected by analyzing the 
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change in weight. B. Cortinas-Lorenzo et al. [11] also found that the optimization algorithm of the deep model 
affects the validity of the watermarking information of the DNN model. The Adam optimization algorithm leads 
to significant changes in the distribution of the weight parameters of the DNN model, and the watermarking in-
formation is more easily detected. They proposed the Adam optimization algorithm based on orthogonal block 
projection, which optimizes the weight of the DNN model without changing the model to avoid watermark infor-
mation being detected by attackers.

Different from the traditional way of modifying parameters to realize watermark embedding. Key-based 
model protection schemes have been proposed. Xue et al. [12] proposed an active intellectual property protec-
tion technique called “ActiveGuard” for deep neural networks. This technique leverages adversarial examples 
as users’ fingerprints to ensure the security and protection of the model’s intellectual property. By introducing a 
control layer into the model and using adversarial examples as keys, authorized access to the model is achieved. 
While Fan et al. [13] add a passport layer after each convolutional layer. If the user does not have the correct key 
to pass through the passport layer, the performance of the model decreases drastically. Tian et al. [14] used a hi-
erarchical access approach. Encryption algorithms are utilized to encrypt important parameters in the DNN mod-
el. Different levels of access can decrypt different number of parameters. Zhao et al. [15] proposed the copyright 
protection method of DNN model by using the pruning rate as the key, which only provides the correct pruning 
rate for authorized users. An unauthorized user cannot recover the full performance of the DNN model without 
the correct key.

2.2   Backdoor-based Watermarking

Backdoor attack [16] is a type of attack on the DNN model. The attacker trains the model and the model input 
a specific label when a specific input appears. A particular input is defined as one or more instances in the deep 
model, and the set of these instances is called the trigger set. The DNN model can be trained with the function 
of the classification trigger set by taking advantage of the overparameterized characteristic of the DNN model. 
Adding backdoors to the model does not degrade the performance of the model on the original task [17]. Yossi 
et al. [18] used the backdoor as the watermark key image and took advantage of the overparameterized feature 
of DNN. In this scheme, the corresponding label of the trigger set is randomly selected. Finally, watermark de-
tection is realized by comparing the accuracy and threshold of the trigger set. Li et al. [19] proposed a copyright 
protection framework for the DNN model based on blind watermarking. Through this framework, the identity of 
the owner of the model and the DNN model is associated, and the watermark key trigger set is generated by tak-
ing the ordinary trigger set and the specific trigger set as the input.

Wu et al. [20] trained the host network and watermark extraction network together, and the trained neural 
network also embedded watermarks in the output image while realizing the original task. By detecting the wa-
termark in the output image, the copy-right ownership of the host network is identified, and whether the image 
comes from a neural network is determined. Linna Wang et al. [21] proposed a dynamic watermarking method 
based on a reversible image hiding network, which enhances the watermark’s imperceptibility and accuracy.

The advantages and disadvantages of these methods are as follows: The backdoor attack method is simple 
and easy to implement, allowing for the modification of model behavior without detection. However, it is prone 
to detection and loses effectiveness once discovered. Watermark-based methods can associate the model with its 
owner, thus protecting intellectual property. However, they may impact model performance and could become in-
effective, especially under adversarial attacks. Training both the host network and watermark extraction network 
simultaneously enables watermark embedding while maintaining model performance, but it requires more com-
plex training and design, potentially increasing computational costs. Dynamic watermarking methods can en-
hance the concealment and accuracy of watermarks but may introduce additional complexity and computational 
overhead. Upon analyzing the aforementioned methods, we have observed that the majority of research focuses 
on robust watermarking techniques aimed at protecting the copyright of DNN models, which exhibit insensitivity 
to variations in the embedded watermark. Therefore, the key issue addressed in this paper is to utilize black-box 
watermarking techniques to detect whether deep neural networks have been subjected to malicious fine-tuning. 
Additionally, the watermarking method should also enable copyright authentication. Thus, to address both the 
model integrity verification and copyright ownership verification issues, we propose the approach presented in 
this paper.

We combine the concept of traditional fragile watermarking with black-box watermarking techniques for wa-
termarking deep neural network models. For the application of this approach, we need to consider the following 
issues. Firstly, it should be easy to extract from and embed into the model, with low training costs. Secondly, the 
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embedded watermark should be imperceptible and have minimal impact on the original neural network. Lastly, 
there should be quantifiable metrics to address malicious fine-tuning, and the watermark should also be scalable.

2.3   Dataset Adjustment

Datasets have a strong correlation with deep neural network models, and the structure of the neural network mod-
els can affect the results of dataset classification. Y. Adi et al. [18] proposed constructing a trigger set by using a 
set of abstract images and tags that are not related to the image content. The tags are generated randomly and are 
independent of each other. Datasets can also deceive deep neural network models. N. Carlini et al. [22] proposed 
that adversarial examples (AEs) be used to confuse neural networks. Adversarial examples are indistinguishable 
to the human eye, but can interfere with neural networks to produce unreliable decisions. Labels that trigger mis-
allocation of datasets more or less distort the original decision boundary. Q. Zhong et al. [23] minimizes (or even 
eliminates) the effect of distorting he original decision boundary by adding new class tags to the well-crafted key 
samples during training. Consequently, the protection of the neural network model can also be considered from a 
dataset perspective, by generating new trigger datasets and modifying them. The review written by Linna Wang 
et al. [24] also mentioned the impact of datasets on DNN models in dynamic watermarking, and introduced the 
authenticity of datasets when used for copyright authentication.

3   Methodology

We propose a black-box watermarking framework for DNN models. The core operation process of the frame-
work is shown in Fig. 1. Trigger images are trained cyclically in the generative network and the target network to 
finally realize the DNN model watermark embedding. In this section we describe in detail the training process of 
watermark embedding, the loss error of model watermarking during training, and the method of model validation 
proposed in this section.

Fig. 1. The overall flow of the proposed 

(Our watermarking scheme consists of two parts: training and authentication. The training part represents the three stages of 
trigger image set generation, trigger image set classification training and model watermark embedding (see Section 3.2). The 
authentication part rates whether the model has been modified by comparing the classification labels with the original labels 
of the trigger images and measuring the trigger set accuracy (see Section 3.4).)

3.1   Overview

This chapter will provide a detailed overview of the design process of the black-box watermarking technique 
based on trigger image sets. The proposed black-box watermarking method can not only protect deep neural 
models but also verify the integrity of the models. The introduction elaborates on the background and signif-
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icance of the design. Subsequently, the chapter delves into the design process of the watermarking scheme, 
including the trigger image training phase, watermark embedding process, and watermark verification process. 
When discussing watermark training losses, the chapter will focus on analyzing losses during the trigger image 
training phase and the watermark embedding phase. Next, experimental results and analysis will be presented, 
including an introduction to the experimental dataset, the impact of different training set selections, model wa-
termark performance, comparisons with existing methods, and model attack detection. Finally, a summary of the 
chapter’s content will be provided, laying the groundwork for the discussion in subsequent chapters.

3.2   Watermark Training

Fig. 1 illustrates the overall architecture diagram of the watermarking proposed in this paper. We focus on the 
model watermark training part in this section. The process consists of three phases: generation of trigger image 
set, classification training of trigger image set and model watermark embedding.

Trigger Image Set Generation Phase.  The trigger image set is related to the DNN model user and a set of trig-
ger images is constructed based on the user specific key. The composition of the key is expressed as K = k1, k2, 
..., kn−1. Since the key is selected based on the user, the key itself is confidential. We utilize the key to construct 
a set of trigger images. A set of trigger images constitutes a set of trigger images to be used as the next stage of 
training. The set of trigger images is constructed based on the key, so the relationship between trigger images and 
labels is as follows:

{ } { }, ( , ) | 0,1, 2,..., 1 .i iImage Label I k i n← = −                                              (1)

Where Image denotes the trigger image, Label denotes the label corresponding to the trigger image, and k1 de-
notes the key. Here, in order to facilitate more convenient confirmation in the future, we directly take the key as 
the label corresponding to the trigger image. However, since the model itself has different classification tasks, the 
corresponding number of classifications is also different, we will put a limit on the key. The following is the key 
restriction for the n-categorization task model as an example.

( 0,1,2, , 1).[0,9],k ii n= … −∈                                                            (2)

Where n represents the number of classifications of the model and also the number of trigger image sets and 
the length of the key.

Trigger Image Set Classification Training Phase.  In this phase we will train the trigger image set using the 
original DNN model and the generated model, and fine-tune the original DNN model using the backdoor meth-
od. The main purpose of this phase is to enable the trigger image set to be accurately classified in the source 
DNN model with the same label provided by the key as shown in Equation 1. For the training method in this 
phase, we use the backdoor training method. The trigger image set and the clean training dataset are put into the 
source DNN model together for training. The specific method is as follows. First, we use the training set to train 
the original DNN model Morigin in the first round, so that the original DNN model reaches the required accuracy. 
Then, we mix the normal images in the training set and the trigger images in the trigger set to form a new train-
ing set. The new training set is input into Morigin for the second round of classification training.

The Morigin that has been trained using the training set has a high accuracy. So, when a new training set is input 
to the original DNN model is able to classify that dataset according to the labels. During the second round of 
training, Morigin performs normal classification on normal images. The newly added triggered images are misclas-
sified. Here the loss due to classification error is called classification loss Lc , for which the details are described 
in Section 3.3. The generative model uses the classification loss to fine-tune the trigger image, and then inputs the 
fine-tuned trigger image together with the normal image into the original DNN for classification training. After 
several repetitions of training the model to recognize the images in the training set and trigger set, the model 
gradually improves the classification accuracy of the trigger images under the training of the mixed dataset. The 
purpose of the second round of training is to enable the trigger images in the trigger image set to be accurately 
classified in the original DNN model. Mixing the normal images in the training set and the trigger images in the 
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trigger set for training can be used to assist the DNN model to classify the trigger image samples into the speci-
fied classification labels by using the correct image classification. It greatly improves the classification accuracy 
of the DNN model for the trigger image set. The model after this stage of training is denoted as Mtra .

Model Watermark Embedding Phase.  We would like to mention a concept first. For a multi-classification task 
DNN model, the probability P of each classification can be obtained by Softmax function after classification, 
i.e., P = {Pj | j = 0, 1, ..., n−1(∑ Pj = 1)}, where Pj is denoted as the predicted probability of categorizing each 
category of the model in (0,1). For the prediction probability, if the variance of the prediction probability is larg-
er then it represents the lower accuracy of the model in classifying the image. At this stage we utilize the fragile 
watermarking method to test fine-tuning only for the trigger set and embed the watermark into the model. The 
specific method is as follows; we merge the trigger graphs trained after the trigger image set classification train-
ing stage into the trigger set Dtri. We input Dtri into the DNN model Mtra, and perform Softmax operation to find 
the predicted probability of classification Pt for all the output classification results. Here, we only take the highest 
probability in the classification to calculate. After the predicted probability is calculated for all trigger images, 
the variance of the predicted probability σ(Pt) is calculated. There are still misclassifications at this stage, so the 
classification loss Lc remains. This is where we arrive at the test loss Lt for this stage, which is described in more 
detail in Section 3.3. The generative model uses the test loss to fine-tune the trigger images in the trigger set, and 
then inputs the fine-tuned trigger images into Mtra for classification training. It is also necessary to input the test 
set into Mtra during the training process and record the classification accuracy of the test set. The training process 
will be repeated several times until specific conditions are met before stopping.

The main purpose of this phase is to make the trigger set classified in the DNN model accurate enough. That 
is, when the DNN model embedded with the watermark is modified, the model’s classification of the images in 
the trigger set will produce errors. So the conditions for the end of training in this phase need to fulfill two re-
quirements. First, sufficiently accurate classification in the DNN model means that the classification accuracy of 
the triggered images in the trigger set should be equal to 1, i.e., condition one is Acctrigger = 1. Second, while we 
ensure that the DNN model can accurately recognize the trigger set, we also need to ensure the model’s classifi-
cation accuracy on the dataset that has normal images. So the second condition is to ensure that the classification 
accuracy of normal images in the test set is greater than or equal to the training accuracy of the DNN model on 
the training set, i.e., condition two is Acctest ≥ Acctrain. After the training process satisfies the above two conditions, 
the process stops and the watermark proposed in this paper is embedded into the DNN model by this training 
method. The model after embedding the watermark through this stage is denoted as Mwm

After the above three stages model Morigin is embedded with the watermark proposed in this paper. Finally, 
we will get the model Mwm embedded with the watermark and the trigger images to form the trigger set Dtri. 
Subsequently, the integrity and attribution of the model can be judged by Mwm and Dtri, and the details of the veri-
fication are in Section 3.4.

3.3   Watermark Training Loss

In this section, we focus on the losses mentioned in Section 3.2. The losses mentioned in Section 3.2 consist of 
two main ones. The first one is the classification loss Lc in the training stage of trigger set image classification. 
The second is the testing loss Lt in the model watermark embedding stage.

Classification Loss.  This loss is generated during the training phase of the trigger set image classification. 
Since the trigger images and corresponding labels in the trigger set are not trained in Morigin . So when the trig-
ger images and normal images are input into Morigin together for training, Morigin generates an error in classifying 
the trigger images. The error generated by Morigin’s inability to classify the trigger images to their corresponding 
labels, which we refer to as the classification error Lc is mentioned in Section 3.2. The multi-classification task 
DNN model can obtain the probability of each classification Pj by Softmax function after classification. the clas-
sification error is calculated based on the cross-entropy loss of the probability, i.e., Lc is the cross-entropy loss of 
multi-class classification, defined as follows:

1

0

log( ).
n

c j j
j

k P
−

=

= −∑L                                                                    (3)
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Where n is the number of classifications of the multiclassification model, and Pj is denoted as the predicted 
probability of classifying each category of the model in (0, 1). The Lc exists both in the training phase of trigger 
set image classification and in the embedding phase of model watermarking.

Test Loss.  This loss is generated in the model watermark embedding phase. This loss consists of two parts. The 
first one is the loss generated by Mtra’s classification of the triggered images in the trigger set, which is designed 
to correct the correctness of the classification of the triggered images. The second loss is the loss generated by 
the variance of the prediction probability, which is to adjust the model to be more accurate in predicting the prob-
ability of each classification of the triggered images. Here we reduce the variance of the classification prediction 
probability by calculation. Reducing the variance makes the classification prediction probabilities less discrete. 
It allows the watermarking model to make an error in the classification of the trigger image when it encounters a 
modification. The formula for calculating the variance of the prediction probability is given below:

2 .( ) ( )t j jP k Pσ µ= −∑                                                                 (4)

.j jk Pµ =∑                                                                          (5)

where σ(Pt) is the variance of the predicted probability. μ denotes the mean of the ith. classification. ∑ denotes the 
summation. Pj denotes the predicted probability of the jth classification. After calculating the variance of the pre-
dicted probability, we can derive the loss formula in the embedding stage of the model watermark as:

,( )t t cW Pσ= +L L                                                                     (6)

where W is a weighting factor. This stage contains both parts of the loss. We add weighting coefficients to the 
variance loss part in order to improve the model’s probability of classifying the triggered image while preventing 
overfitting.

The losses mentioned in this section are mainly used to improve the model’s classification accuracy for trig-
gered images in the trigger set. The purpose of using loss optimization is to achieve two things. The first is that 
the model has a classification accuracy of 1 for the triggered images, and the second is that the classification 
accuracy of the normal samples can reach the accuracy of the source model in the model. During the training 
process, to prevent overfitting caused by training, we consider variance in the loss. Overfitting can be better pre-
vented by increasing the weight coefficients and adding variance to the overall loss.

3.4   Watermark Verification

The Authentication section in Fig. 1 shows the process of watermarking for authentication. In this section we 
give a detailed description of the process of watermark authentication.

Before presenting our watermarking authentication method, we describe the application scenarios of the wa-
termarking method proposed in this paper. Consider the third aspect: model owner, user and attacker. The model 
owner has the highest administrative authority over the model and is also responsible for the security of the 
model. In order to reduce the leakage of the model during distribution or authorization. Model owners store their 
trained models in the Model Management Cloud Platform (MMCP), a model management platform that stores 
models and provides API interfaces. The platform enables models to be called by users without being distributed. 
This prevents models from being stolen during the distribution process. We will not go into details about MMCP 
here. 

The API interface of MMCP provides a more convenient way to access the data, but the convenience of ac-
cessing the data may be utilized by attackers for poisoning. This results in model misclassification or model 
backdoor. Based on the above scenarios we can find. Attacks against the model will mainly be realized by up-
loading pictures through the API interface, i.e., poisoned pictures will be used by the attacker to realize poisoning 
attacks. The owner of the model integrity authentication also needs to be realized through the API interface.

In Section 3.2 we mentioned. After training the embedded watermark, we will get the embedded watermarked 
model Mwm and the trigger images to form the trigger set Dtri. Corresponding to the above scenario, Mwm is stored 
in MMCP by the owner, and Dtri is stored privately by the owner. In our approach, a new authentication metric 
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is proposed to verify whether the watermarked model has been modified or not. The metric is proposed based on 
the termination condition of the model watermark embedding phase.

The first metric is the classification accuracy Acctrigger of the trigger image. This metric is proposed based on 
one of the termination conditions in the watermark embedding phase of the model, Acctrigger = 1. Dtri is input to the 
classification model through the API, and the classification accuracy of the triggered image is computed based on 
the returned triggered image classification result. If Acctrigger < 1, then Mwm has been modified. The stronger the 
malicious attack against the model on Mwm, the more Acctrigger drops.

The second metric is the classification label of the trigger set. After the watermarking training process in 
Section 3.2, Mwm is able to accurately classify the trigger images in Dtri. The trigger images and classification la-
bels in Dtri correspond as shown in Eq. (1). The trigger images are classified a new kind of category in Mwm after 
Mwm suffers from a malicious attacker:

{ 0,1, , 1}.|ic i n= = … −                                                               (7)

Where ci denotes the category corresponding to the ith graph after classification. The labeled category corre-
sponding to the trigger image in Eq. (1) is ki. Based on these two labeled values, we can determine whether the 
model has been tampered with by analyzing the corresponding values between the two. When there is a differ-
ence between ci and ki comparison, the more difference exists means the more Mwm has been modified.

4   Experiments

In the experiments of this paper, we focus on two datasets CIFAR-10 and CIFAR-100. Where CIFAR-10 is main-
ly trained on VGG-16, VGG-19 and ResNet-56 for classification tasks. CIFAR-100 is trained on ResNet-56 and 
DesNet-40 for classification tasks. In this paper, we describe the experimental setup in Sections 4.1, 4.2 and 4.3, 
respectively. Different experimental results and analysis are presented in Section 4.4.

4.1   Dataset and DNN

This section focuses on the datasets used in the experiments of this paper, which include CIFAR-10, CIFAR-100 
and the trigger set proposed in this paper (see Table 1).

Table 1. Data set information used in this article

Datasets Train Test Class Resolution
CIFAR-10 50,000 10,000 10 32 × 32
CIFAR-100 50,000 10,000 100 32 × 32

TRIGGER SET - - 10 32 × 32

4.2   Implementation Details

The experiments are performed on Ubuntu 18.04 with an Intel Xeon Gold 5218 CPU @ 2.30GHz and an 
NVIDIA QUADRO RTX 8000 GPU. The watermark training scheme proposed in this paper is implemented in 
Python 3.9.2 and PyTorch 1.9.0 using trigger sets for model integrity detection. Next, we describe the training 
setup for the classification model.

Training Settings.  VGG-16 and VGG-19 were trained on CIFAR-10 for 160 epochs, and ResNet-56 was 
trained on CIFAR-10 for 150 epochs. The optimizer used for these three models is SGD, with momentum set to 
0.9 and the initial learning rate set to 0.1, reduced to 1e-4 at 100 epochs and 1e-5 at 140 epochs. ResNet-56 and 
DesNet-40 are trained on CIFAR-100 for 200 epochs. The initial learning rate is set to 1e-4 and reduced to 1e-5 
at 160 epochs.
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4.3   Evaluation Protocol

In terms of evaluation metrics, ω denotes the percentage of randomly selected normal images in the training set 
during the training phase of the trigger image set. Baseline is defined here as the classification accuracy of the 
model on the test set after training, and this metric is also used for the purpose of better watermarking impact on 
the accuracy of the model. Acctest denotes the classification accuracy of the model on the test set after embedding 
the watermark. Acctrigger denotes the classification accuracy of the model on the trigger set after embedding the 
watermark. In this paper we will illustrate the choice about, ω by measuring Baseline and Acctest as well as the 
time spent on training. Acctest and Acctrigger are utilized to illustrate the effect of the model after being attacked by 
poisoning.

4.4   Results and Analysis

Selection of Training Set.  The accuracies of the models trained on the test sets with different occupancy are 
demonstrated in Table 2. Two datasets, CIFAR-10 and CIFAR-100, were selected for this experiment and tested 
on VGG-16, VGG-19, and DesNet-40, respectively. Times represents the time spent on watermark embedding in 
the watermark embedding phase of the model, in which we set 10 epochs as one time.

In our experiments, we set the percentage of randomly selected normal images in the training set to 1%, 5%, 
10%, 12% and 15%, respectively. It is shown in the experimental results. As the percentage increases, the clas-
sification accuracy of the model on the test set after embedding the watermark is increasing and approaching 
Baseline. But the time required to embed the watermark is also increasing. So based on the analysis of the data 
in Table 2, we draw the following conclusions. In the training phase of triggering image set classification, the 
number of selected test sets is associated with the performance of the model and the efficiency of watermark 
embedding. When the number of selected datasets increases, the classification accuracy of the model for normal 
image test set keeps increasing to reach the level of Baseline. But the time required for watermark embedding 
also increases. Conversely, when the number decreases, the classification accuracy of the model on the test set 
decreases. But the time required for watermark embedding also decreases. In summary, we need to consider an 
appropriate number of selected training sets. Based on the data in Table 2, we will select 10% of normal images 
from the training set with Dtri. Make sure to achieve a balance between model classification accuracy and water-
mark embedding time.

Table 2. Classification accuracy of test set in models trained on training sets with different occupancy ratios

Datasets DNNs Baseline (%) ω (%) Acctest (%) Times

VGG-16 93.74 1 80.62 (-13.12) 12
5 84.34 (-9.40) 15
10 93.57 (-0.17) 16
12 93.70 (-0.04) 19

CIFAR-10 15 93.69 (-0.05) 20
VGG-19 93.62 1 82.66 (-10.96) 12

5 83.63 (-9.99) 14
10 93.42 (-0.20) 16
12 93.56 (-0.06) 20
15 93.56 (-0.06) 21

DesNet-40 74.86 1 63.62 (-11.24) 16
5 68.83 (-6.03) 17

CIFAR-100 10 74.66 (-0.20) 20
12 74.66 (-0.20) 22
15 74.79 (-0.07) 24
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Model Watermarking Performance.  In this section we will classify CIFAR-10 and CIFAR-100 in different 
models respectively. And compare the accuracy of DNN model after training with training set and the accuracy 
of DNN model after embedding watermarking. In order to illustrate the fidelity of the watermarking model pro-
posed in this paper.

The output tensor of the final convolutional layer of the model is projected onto a two-dimensional plane, as 
shown in Fig. 2, using the visualization tool UMAP. The left and right images respectively depict the projected 
features extracted from the source model trained on CIFAR-10 and the black-box watermark model. The ten larg-
er colored circles represent the projected feature points of 5,000 normal samples, while the purple dots within the 
circles represent the projected feature points of 36 trigger images, all belonging to ten image classes. As shown 
in Fig. 2, once the model embeds a fragile watermark, the projected feature points of trigger samples deviate 
from the center to the classification boundaries. When the feature projection points of trigger samples are close 
to the classification boundary, they possess higher potential for attacks, as even minor perturbations may lead to 
misclassification by the model. This enhances the stability and reliability of the black-box watermark technique, 
as trigger samples can still activate the watermark during the inference phase and influence the model’s behavior, 
even in cases where direct access to the model parameters is not feasible.

The accuracy comparison of CIFAR-10 and CIFAR-100 in DNN model is shown in Fig. 3, respectively. It 
can be seen that the Acctest after embedding the watermark in (B) will be slightly reduced than Baseline. But this 
reduction scale is very small is within reasonable fluctuation and does not affect the accuracy of the model. The 
main reason for this situation is that image classification in CIFAR-10 is relatively simple. Normal and triggered 
images are easily disturbed when they are trained together, which makes the DNN model classify normal images 
with a small decrease in accuracy. In (A) we can see that Acctest is higher than Baseline part on ResNet-56. This 
shows that under the watermarking of the model proposed in this paper. There are cases where the accuracy of 
the watermarking model is slightly reduced and slightly improved. But both the decrease and increase are less 
than 0.2%.

Fig. 2. The comparison of feature projections before and after watermark embedding 

(The left and right images respectively depict the results obtained from training the source model and the black-box water-
mark model on CIFAR-10 dataset.)

Attacks Detection.  In this section, we study the performance of watermarking techniques when attacked by 
contaminated datasets. We study the following two types of data poisoning behaviors. One type is traditional 
data poisoning. That is, the attacker intentionally introduces a large number of mislabeled samples in the training 
set to degrade the performance of the model. The other is backdoor data poisoning. The attacker uses mislabeled 
samples that contain the training set and with backdoor patterns as an attack. We prepared three types of datasets. 
The original dataset origin, the data poisoning dataset poison containing a dozen of mislabeled samples, and the 
backdoor data poisoning dataset backdoor. Use these three types of datasets to classify the data using Mwm and 
record the Acctrigger at different epochs.
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Fig. 3. Accuracy comparison 

(Comparison of the accuracy of different DNN models in classifying normal images before and after embedding the water-
mark. x-axis is different DNN models and y-axis is Acctest . The blue color represents the accuracy of the DNN model classifi-
cation test set when the watermark is not embedded, and the green color is the accuracy of the DNN model classification test 
set after the watermark is embedded. Where (A), (B) and (C) are experimental data on CIFAR-10. (D) and (E) are experimen-
tal data on CIFAR-100.)

Fig. 4. Classification accuracy of triggered images after training with different attacks on CIFAR-10 and CIFAR-100 datasets



288

Black Box Watermarking for DNN Model Integrity Detection Using Label Loss 

Fig. 4 show the experiments on the classification accuracy and classification categories of the trigger image, 
respectively. From Fig. 4 we can see. In origin is normal image and the model attacked with origin does not pro-
duce any modification to the model. Therefore, the accuracy in the experiment is consistent with Acctrigger = 1. In 
Fig. 4 we see that the classification of the model attacked with origin also corresponds to the label corresponding 
to the trigger image. Thus, the experiment also conforms to our second judgment metric: label correspondence. 
Next, we analyze the remaining two attack scenarios with origin separately. About the attack on the poison data-
set. First of all you can see in Fig. 4. After a period of attack, Acctrigger started to decrease continuously even down 
to almost 80%. And in Fig. 4 we can see that the categorization starts to change and different trigger images are 
misclassified into different categories. About backdoor dataset attack. First of all in Fig. 4 we can see. After a pe-
riod of attack, Acctrigger produces a substantial decrease or even drops below 80%. In Fig. 4, it can be seen that a 
large number of trigger images are categorized into the same category.

The poison dataset attack uses multiple mislabeled samples, so it will present a situation where multiple trig-
ger images are misclassified in Fig. 4. The backdoor dataset attack produces a situation where multiple trigger 
images are misclassified into the same class because it uses samples with backdoor patterns. In this experiment, 
the attack dataset we use has a relatively small amount of data, so the impact on the accuracy of Acctrigger is mild. 
And the reason we adopt a smaller amount of data is to verify whether the model watermark can be detected 
in the face of minor modifications. Table 3 also lists some data to determine if the model has been modified. In 
summary, the model watermarking proposed in this paper is capable of detecting model modifications generated 
by data poisoning and backdoor attacks. The usability of the model watermark in this paper is demonstrated.

Table 3. Trigger set precision and classification accuracy 

(Class represents whether there is an error in the classification of the trigger set. √ indicates no classification error. × indicates 
a classification error. Indicators that satisfy the criteria for being recognized as a modified model are marked in the table.)

Datasets DNNs Acctest (%) Class Acctrigger (%) Status
93.74 √ 90.00 Modified
93.68 × 86.67 Modified

CIFAR-10 VGG-16 93.75 × 100 Modified
93.64 √ 100 Safe
84.88 × 77.78 Modified
74.86 √ 93.50 Modified
74.80 × 86.30 Modified

CIFAR-100 DesNet-40 74.79 × 100 Modified
74.83 √ 100 Safe
66.33 × 73.00 Modified

Watermark Frame Comparison.  This section aims to compare and analyze the current mainstream centralized 
model protection watermarking frameworks. The selected mainstream watermark protection frameworks for 
comparison include backdoor watermarking, embedded passports, and adversarial samples. The main aspects of 
comparison include the impact of the model framework on model performance and whether the model can de-
tect integrity. According to the data analysis in Table 4, it can be observed that white-box watermarking exhibits 
stronger capabilities in detecting model integrity. However, due to the adjustment of the model’s structure, em-
bedding watermarks may potentially affect the model’s accuracy. Conversely, black-box watermarking has mini-
mal impact on the model’s accuracy. However, due to the embedding of watermarks based on backdoor training, 
detecting modifications to the model can be challenging.

Both the Embedding Passports and Adversarial Examples methods fall under the category of white-box water-
marking, which affects the original deep neural network model, leading to a decrease in accuracy. On the other 
hand, although the Backdooring method does not impact the model’s accuracy, it fails to detect the model’s in-
tegrity. The method proposed in this paper has been experimentally tested and successfully detects model modifi-
cations while maintaining model accuracy.
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Table 4. Comparison between different watermarking frameworks and the watermarking framework in this paper 

(The test data set and model are CIFAR-10 and ResNet56.)

DNN Watermark frame Method type Acctest (%) Check
Baseline - 93.51 -

Embedding passports [25] White box ↓ √
ResNet-56 Adversarial Examples [16] White box ↓ √

Backdooring [22] Black box = ×
Ours Black box = √

5   Conclusions

In this paper, we propose a neural network black-box watermarking method based on trigger set label loss, which 
effectively detects DNN model integrity. Experimental results show that the method is able to present the model 
when it is modified by the classification distribution of the trigger set, and does not impair the performance of 
the neural network on the original task. Our method is a novel detection method that can provide a good solution 
to the current commercial DNN modeling scenario. Since the method proposed in this paper is mainly imple-
mented using the trigger image set and takes into account the classification accuracy for normal images. So, the 
watermarking method will have no effect on the classification accuracy of the model itself. When the model is 
modified, the classification of the triggered images will be affected thus producing wrong classification. Thus, we 
propose a judgment indicator for whether the model has been modified or not.

For the future outlook, we will continue to optimize for the model watermarking training phase. Try to reduce 
the time consumed for model embedding training. Optimize the trigger image to reduce the impact on classifica-
tion.

In this paper, we introduce a novel neural network black-box watermarking method based on trigger set la-
bel loss, which effectively detects integrity breaches in DNN models. Experimental results demonstrate that our 
method accurately identifies model modifications through changes in the classification distribution of the trigger 
set, while preserving the neural network’s performance on the original task. Our approach offers a promising 
solution for addressing integrity concerns in commercial DNN modeling scenarios. Since our proposed method 
primarily utilizes the trigger image set and considers classification accuracy for normal images, it does not affect 
the model’s classification accuracy itself. When the model undergoes modifications, the classification of triggered 
images is affected, leading to incorrect classifications. Therefore, we propose a judgment indicator to determine 
whether the model has been modified.

In the future, our research will focus on optimizing the training phase of model watermarking to reduce the 
time required for embedding training. This optimization aims to streamline the process and make it more effi-
cient. Additionally, we will concentrate on enhancing the trigger image to minimize its impact on classification 
accuracy. This involves refining the trigger image generation process to ensure that it does not introduce any un-
intended biases or distortions that could affect the model’s performance. By refining both the training phase and 
the trigger image, we aim to further improve the overall effectiveness and robustness of our watermarking meth-
od.
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