
Journal of Computers Vol. 35 No. 4, August 2024, pp. 291-301
doi: 10.53106/199115992024083504020

291* Corresponding Author

Application of Neural Network-based Intelligent Refereeing Technology 
in Volleyball

Xu Guang1 and Xing-Chen Wu2*

1 Sports Department, Shenyang Aerospace University, Shenyang 110136, China
2677675362@qq.com 

2 Jiushao Institute of AI Algorithm, Jihua Laboratory, Foshan 528200, China
wuxingchen3687@sina.com

Received 4 December 2023; Revised 5 May 2024; Accepted 23 June 2024

Abstract. Advance in AI technology is revolutionizing sports officiating, yet volleyball has seen limited 
application of such innovations. This paper introduces a novel neural network-based approach for real-time 
intelligent refereeing in volleyball, utilizing an advanced multi-scale object detection network and a dynamic 
adaptive sampling method to enhance real-time performance. Our contributions include a unique method for 
integrating human-object interaction detection using Transformers, significantly improving detection accuracy 
and real-time processing capabilities compared to existing technologies. Experimental results demonstrate 
superior performance, with marked improvements in accuracy and real-time applicability. This work not only 
advances the application of intelligent refereeing in volleyball but also sets a foundation for broader adoption 
in other fast-paced sports.
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1   Introduction

In recent years, more and more sports events have begun to consider the introduction of technology for intelli-
gent refereeing [1, 2]. In the field of soccer, the Video Assistant Referee (VAR) has been widely used in major 
competitions. The 2022 Qatar World Cup even integrated AI into this technology, adopting a semi-automatic 
approach for rulings on offside, and it is foreseeable that intelligent refereeing will have broader applications 
in sports events in the future. Currently, AI refereeing is in the development stage, and its feasibility has been 
preliminarily demonstrated. The current status and future application scenarios of intelligent refereeing in sports 
such as basketball and soccer have been explored. However, we still need to continuously explore the technical 
challenges and barriers in the application of intelligent refereeing.

For intelligent refereeing, real-time capability is a crucial feature. In fast-paced sports events, we need to cap-
ture the required information from a continuous stream of video frames. This requires an appropriate method for 
sampling from the video stream. A too small sampling frequency can increase system processing time and affect 
real-time performance, while a too large sampling frequency may impact the accuracy of system results. The 
continuous video frames provide contextual information, which can be used to calculate the motion information 
of individuals or objects and interpolate position information between two frames to fit object motion trajecto-
ries.

In ball sports, rulings can be categorized as pertaining to objects and individuals. Rulings on the ball mainly 
focus on position detection, such as touches on the boundary or in/out judgments. On fields with prominent side-
lines, edge detection algorithms such as monochromatic value processing with Gaussian filtering can effectively 
determine the coordinates of the boundary lines, aiding in out-of-bounds ball judgments. However, traditional 
methods such as color transformation and Hough circular detection are not suitable for ball object detection. The 
high-speed changing scene and other objects on the field can interfere with the detection of ball objects. Neural 
network-based detection methods will become the mainstream algorithm for ball object detection in sports are-
nas.

The judgment of human behavior can be seen as a group activity recognition problem in the volleyball do-
main. Group activity recognition work and related datasets have been gradually developed in recent years. 



292

Application of Neural Network-based Intelligent Refereeing Technology in Volleyball 

Waltner et al. [3] proposed a preliminary and relatively comprehensive solution that generates local spatial infor-
mation feature subspaces using a class-Bayesian detection method and then generates global spatial descriptors 
to model group activities. Spatial descriptors for activities are represented using SVM. However, traditional 
machine learning methods have relatively low recognition accuracy. SVM classifiers based on features like HOG 
and HOF can only achieve around 70% accuracy.

Recently, group activity recognition methods based on deep learning have been developed. Capturing and 
modeling temporal dynamics is a starting point [4]. A hierarchical architecture considers modeling the temporal 
information of each individual using Long Short-Term Memory networks (LSTM) and aggregates individual-lev-
el information to understand group behavior. However, high-speed changes in the background can easily disrupt 
the temporal dynamics of the target, which requires precise target labeling and dynamic sampling detection 
methods.

Another key task for intelligent refereeing is human-object interaction detection, which involves recognizing 
and understanding the actions and relationships between individuals and objects. In volleyball matches, we need 
to detect and determine in real-time the interactions between individuals and the ball and net. High-dimensional 
semantic understanding of the entire scene is crucial [5]. Currently, methods for human-object interaction detec-
tion can be categorized as follows:

1.	 Two-Stage Detection Methods: Two-stage human-object interaction detection typically first detect in-
dividuals and objects in the first stage, outputting target detection boxes. Then, an interaction classifier 
is used to determine the interaction category. Two-stage detection methods are direct but often require a 
large number of candidate pairs, increasing model computational complexity. They also have difficulty in-
corporating global contextual information and are less suitable for video applications, especially in com-
plex scenarios with multiple people and objects. Methods like FCMNet [6] and PDNet [7] have worked 
on this basis and used word embedding layers to capture spatial semantic information better.
However, two-stage detection methods face several disadvantages including high computational complex-
ity due to the need for generating and processing numerous region proposals, which makes them slower 
and less suitable for real-time applications like live sports refereeing. Additionally, their larger model 
sizes and higher memory usage limit their use in environments with restricted computational resources. 
The training of these systems is also more challenging because it involves learning both region propos-
al and object classification tasks, and the overall performance heavily relies on the quality of the region 
proposals—if these are poor, even a highly accurate classifier cannot compensate, leading to suboptimal 
performance. Moreover, managing a large number of candidate regions can be inefficient, particularly in 
scenes with complex backgrounds or multiple overlapping objects, and two-stage methods often struggle 
to integrate contextual information effectively, which is crucial in scenarios where a broader scene under-
standing is necessary for accurate detection.

2.	 One-Stage Detection Methods: One-stage human-object interaction detection methods directly output 
all possible human-object interactions, corresponding detection boxes, and categories on a given image. 
This approach can reduce redundancy and information loss compared to two-stage detection methods. 
However, in scenarios with multiple target recognitions, the computational complexity becomes high, 
and dealing with long-distance dependencies is challenging. InteractNet [8] first proposed this approach, 
which relies on cascaded human-object interaction reasoning. PPDM [9] improved upon this by unifying 
target detection and human-object interaction detection into a single model, introducing the concept of 
interaction points and converting interaction detection into point detection problems.
One-stage detection methods like YOLO and SSD also present several disadvantages, including lower 
accuracy, especially in detecting small or overlapping objects, due to their design that prioritizes speed 
over precision. They are also prone to higher rates of false positives, particularly in cluttered scenes, 
and struggle with handling objects of varying sizes despite recent improvements like feature pyramids. 
Additionally, these methods may lack the necessary contextual understanding for complex scenarios 
where interactions or subtle distinctions are critical, and their performance is highly dependent on the de-
sign of anchor boxes, with inappropriate scales and aspect ratios significantly impacting detection quality. 
Moreover, the training of one-stage detectors can be less stable, sensitive to initial parameters and learn-
ing rate settings, and while they are faster, any added complexity to improve accuracy can diminish their 
speed advantage over two-stage detectors.

3.	 End-to-End Detection Methods: These methods typically use network structures like Transformers and 
do not require specific candidate pair generation steps for target detection or human-object interaction. 
They directly obtain human-object interactions, positions, and categories from image features. End-to-
end solutions simplify the entire system’s workflow and generally capture global contextual information 
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and long-distance dependencies better. DETR [10] uses a Long Short-Term Memory network with a 
Transformer structure and can parallelly detect and output sequences of human-object interactions. These 
methods usually use the Hungarian algorithm to match predicted values with ground truth.
Due to reliance on self-attention mechanisms, which necessitate powerful hardware for efficient opera-
tion, end-to-end methods also require large, well-annotated datasets to perform optimally and avoid over-
fitting, leading to long training times that can hinder rapid development and deployment. Additionally, 
these methods often struggle to incorporate specific domain knowledge or constraints due to their auto-
mated learning process, and their black-box nature can lead to challenges in interpretability, making it dif-
ficult to understand decision-making processes. Moreover, end-to-end systems are sensitive to noise and 
variability in data, which can degrade performance if the training data is not representative of real-world 
conditions, and they may face generalization challenges, struggling to adapt to new or slightly different 
scenarios than those encountered during training.

The remainder of this paper is organized as follows: Section 2 describes the methodologies employed, includ-
ing our improved multi-scale network structure for ball detection and the dynamic adaptive sampling method 
for real-time video analysis. We also detail our novel approach for detecting human-object interactions using 
an end-to-end Transformer-based solution. Section 3 presents the experimental setup, the datasets used, and the 
results obtained. This section provides a comprehensive analysis comparing our system’s performance against 
other existing methods. It includes detailed metrics and discussion on the validation of our intelligent refereeing 
system. Section 4 discusses the implications of our findings, limitations of the current study, and potential areas 
for further research. This section contextualizes our results within the broader field of AI in sports refereeing. 
Section 5 summarizes the key findings and contributions of our research, reiterating the impact on the field of 
sports technology and intelligent systems. We also outline future work and how our approach can be extended to 
other applications.

2   Methods

2.1   Object Recognition and Classification

We combine object detection and traditional boundary judgment methods to achieve real-time ball rulings in vol-
leyball events. The image input is sampled from the real-time video stream captured by a camera.

A challenge in detecting the ball is that it occupies a relatively small number of pixels in the entire frame. To 
address this, we intend to use a multi-scale architecture neural network. We enhance the image resolution through 
deconvolution operations to improve the network’s performance in detecting small objects. In contrast to CNN, 
where the final output is generated after all convolution layers, we refer to the network structure of SSD [11] and 
directly perform detection on the feature maps produced by each convolution layer. Convolution can be seen as 
an up-sampling and cropping operation on the image, and each operation is a scale transformation process. This 
approach ensures that the original object is detected at multiple scales. Unlike SSD, we use residual modules [12] 
as the convolution layers at the bottom of the network. Residual modules ensure that the model has better gener-
alization for detecting small objects at different scales. Regarding the loss function, we use a weighted average of 
the CIoU [13] location loss and confidence loss [14].
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(Intersection over Union). Here, b and b gt respectively denote the centers of the predicted region and the ground-
truth region. ρ represents the distance between the centers of the two regions (using Euclidean distance). d rep-
resents the diagonal length of the minimum enclosing region that simultaneously contains the predicted region 
and the ground-truth region. α represents the weight factor for CIoU (Complete Intersection over Union), and 



294

Application of Neural Network-based Intelligent Refereeing Technology in Volleyball 

2
2

4 (arctan arctan )
gt

gt
w wv

hhπ
= −  is used to measure the similarity in aspect ratios of the two regions.

0ˆ̂( , ) log( ) log( ).p p
conf ij i i

i P i N
E x c x c c

∈ ∈
= − −∑ ∑  (2)

In this equation, c represents the confidence prediction value for a specific class, which depends on the output 
of the classifier. i represents the i-th prior prediction box in the sample, and j represents the j-th ground-truth re-

gion. We use softmax as the classifier error, where exp( )ˆ
exp( )

p
p i
i p

i
p

c
c

c
=
∑

, and p represent the corresponding class.

The final loss function is obtained by taking the weighted average of the two.
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In this equation, β represents the weight factor between the position error and the confidence error.
The CIoU loss is used to measure the similarity between the detected target region and the ground-truth re-

gion, considering factors such as the distance between their centers and the overlapping area. The confidence 
loss, to some extent, represents the confidence that the outlined region can contain the target object. For small 
object detection, errors in relatively larger objects are somewhat amplified. The choice of this loss function al-
lows for considering both the similarity in aspect ratios and the distance between the two regions as indicators of 
consistency. Additionally, it quantifies the requirement that the region must encompass the target object.

The entire network structure is as shown in Fig. 1.

Fig. 1. The structure of the object detection network

2.2   Optimization of Real-time Video Streaming

In our application, our detection is not based on individual still images but is performed in real-time.  In our 
algorithm implementation, we have made certain optimizations for this real-time scenario. Each frame of the 
image first undergoes an edge detection process, using the Canny operator [15], to extract prominent edges. 
Subsequently, we utilize the Hough gradient method [16] to calculate the gradient of all non-zero points in the 
image obtained from the Canny edge detection. By accumulating these gradients, we identify all possible centers 
and calculate the distances between them to obtain radii.
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Circle detection may yield multiple potential circles, and at this stage, we cannot confirm whether a sphere is 
our target object. Other parts such as the human head might also be detected. Therefore, the results at this stage 
serve as the input for the ROI (Region of Interest) for the target detection algorithm and as a confidence consider-
ation rather than the direct target detection output. During the prediction phase, we consider the motion trajectory 
of the sphere, combining the previous frame’s position, motion direction, and circle detection results to assist in 
target detection assessment.

For a continuous sequence of video frames F = {f 1, f 2, ..., fn}, if the previous frame’s predicted position and 
estimated velocity are known, they can be used as a prediction for the next frame’s position, weighted and incor-
porated into the confidence. If only the predicted position is known, the object’s velocity can be estimated based 
on the positions between two frames. If both are unknown, we predict the current frame’s position and use it in 
conjunction with the next frame’s position to determine the estimated velocity.

Considering the real-time nature of the algorithm, we introduce a dynamic sampling method to strike a bal-
ance between reducing computational complexity and improving algorithm accuracy. In the initial phase, we run 
the full algorithm to obtain the positions of the ball for the first few frames while simultaneously predicting the 
ball’s velocity. Afterward, we set a sampling interval period $\gamma$, with an initial value of 1 second. During 
non-keyframes in the video stream, we only perform real-time circle detection and determine the objects that 
meet the conditions based on the previous frame’s position and velocity. These objects are then updated accord-
ingly. This process involves assessing whether there has been a significant change in velocity, and we have
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When θ exceeds the preset threshold, it is necessary to forcibly trigger one target detection operation. 
This is because such situations can be challenging for traditional methods to accurately determine, and we re-

quire a timely offset correction. Building upon this, we can outline the motion trajectory of the ball.

2.3   Detection of Human-object Interaction

In this application, we need to implement detection and assessment of human-object interaction with key objects 
such as balls, boundaries, and nets to enable automated intelligent judgment in sports events.

The problem of predicting the interaction between humans and key objects is based on continuous video 
frames F = {f 1, f 2, ..., f t}, masks of the human body H = {h1, h2, ..., ht}, and masks of the key objects M = {m1, 
m2, ..., mt}. The goal is to predict the contact status between humans and key objects to make judgments on hu-
mans in consecutive video frames, such as whether they stepped on a line, touched the net, or touched the ball, 
among other contact states.

For detecting interactions like touching the net, touching the ball, and stepping on a line, we treat it as a 
Human-Object Interaction (HOI) task. Compared to traditional convolutional neural network methods, we addi-
tionally extract context information of humans and objects from the video to assist in learning. We define human 
interaction as a quintuple (C_human, C_interaction, C_object, P_human, P_object), where P represents the posi-
tion for each corresponding category, and C represents the confidence for each corresponding category.

Our network starts with a multi-layer convolutional neural network (CNN) structure for feature extraction 
from the input images. After passing through the CNN, the input image is transformed into a feature map with 
high-dimensional semantic information, with dimensions (Hf , Wf , Cf). Subsequently, a 1×1 convolutional layer is 
used to reduce the number of channels to df . This dimension reduction helps in reducing the number of parame-
ters, enhancing interaction between different channels, and improving the network’s non-linear fitting capability. 
After dimension reduction, we obtain a feature map with dimensions (Hf , Wf , Cf). The Transformer encoder typi-
cally requires a sequence input, and to preserve spatial information, we flatten the feature map into a sequence of 
length Hf  × Wf [17], where each element is a vector of length d. Instead of traditional convolutional kernels, we 
use residual modules (ResBlocks) as our feature extraction network structure.

The obtained feature maps can be used as input to the Transformer encoder. We employ a feedforward neural 
network with multi-head attention mechanism [18]. In each attention layer of the Transformer, we introduce po-
sitional encoding to help the attention layers capture the relative positional information of the flattened sequence. 
We use the sinusoidal positional encoding method:
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The positional encoding is added to the feature sequence and weighted summation, serving as the input to the 
Transformer encoder. This helps the encoder’s output to contain sufficient global information.

The Transformer decoder comprises multi-head cross-attention layers. The key, value, and query vectors in the 
Transformer, on the decoder side, are combinations of the feature sequence vector containing positional encod-
ing, the serialized vector, positional encoding, and the human-object interaction query vector, respectively.

The output of the Transformer decoder serves as the input to a multi-layer perceptron (MLP) embedding layer, 
which is responsible for decoding the human interaction quintuple. This MLP includes three single-layer percep-
trons, each responsible for detecting and outputting confidence scores for humans, interaction categories, and ob-
ject categories. Additionally, it includes two three-layer perceptrons for recognizing human body object detection 
boxes and object detection boxes. The output layer of the confidence perceptron uses softmax classification. The 
output vector lengths for human and interaction confidence perception are 2, representing foreground/background 
and interaction occurring/not occurring (in our application, interaction includes only one type). The output vector 
length for object category confidence perception is 4, representing confidence scores for the ball, net, line, and 
background. The output vector length for human and target detection box from the multi-layer perceptron is 4, 
representing the four coordinates of the target detection box.

The final network structure is as shown in Fig. 2.

Fig. 2. A Transformer-based solution for human-object interaction detection
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In the model training phase, after obtaining predicted human interaction (HOI) tuples, we need to match them 
with the ground truth. We define the model’s output HOI tuples as O = oi, i = 1, 2, ..., N, and the true HOI tuples 
as T = t i, i = 1, 2, ..., M. Since the model might make incorrect judgments about interactions, the lengths of these 
two sets may not be equal. To make them equal, we will pad the true HOI tuples with N − M elements.

Based on this, we can define a mapping function ϵO,T that maps the sequence index of model output to the se-
quence index of the ground truth, where ϵ(i) corresponds to the i-th ground truth.

The model’s matching loss function can be defined as follows:
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i
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The term l (t i, oϵ(i)) represents the specific item matching loss between t i and oϵ(i).
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The term l j
class represents the classification loss for humans, objects, and interactions, and it is defined as l j

class = 
lclass(t

i
j , oj

ϵ(i)). This uses a standard softmax classification loss function.
The term l k

box represents the distance measurement between detection boxes, and here we refer to the method 
mentioned earlier in object detection, using the CIoU loss function.

After deriving the matching loss function, we utilize the Kuhn-Munkres (KM) algorithm to solve the bipar-
tite matching problem, identifying the optimal match between the predicted human interaction sequence and the 
ground truth values.

ˆ arg min .
N

L
∈Θ

=

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Where ΘN represents the solution space for the entire bipartite matching problem. Once each matching pair is 
obtained, the network’s loss can be calculated for training. Through iterative optimization, the final model is ob-
tained by fitting the data continuously.

This Transformer-based approach serves as a comprehensive end-to-end solution for human interaction. In 
contrast to traditional one-stage or two-stage methods for human interaction detection, this model can directly 
complete the process from input image to output human interaction detection sequences. Traditional approaches 
often treat confidence score output and detection box output as two independent tasks, whereas in our implemen-
tation, these tasks are performed simultaneously.

3   Experiment

3.1   Ball localization Quality

We used a publicly available volleyball detection dataset \footnote{https://towardsdatascience.com/ball-tracking-
in-volleyball-with-opencv-and-tensorflow-3d6e857bd2e7} and a custom dataset, and applied data augmentation 
techniques as listed in Table 1.

Table 1. Data augmentation techniques

Methods Value
Rotation 40°
Translation (width) 20%
Translation (height) 20%
Shear 20%
Scale [80%-120%]
Horizontal flip
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The input image is first preprocessed, scaled to (512, 512), and then color-normalized based on the mean RGB 
values of the dataset before being input into the network. As shown in Fig. 3, the output of ball object detection 
includes the four coordinates of the ball detection box and their corresponding confidence scores.

Fig. 3. The image processing for one frame

(The original input image will be preprocessed and output the real-time detection results.)

We compared the improved multiscale architecture neural network with the results of R-CNN and SSD net-
works and found an increase in the mean average precision (mAP) metric. Data augmentation also showed a no-
ticeable improvement in network performance. Taking into account the high-frequency movements and deforma-
tions that volleyball might exhibit in a real-time sports environment, data augmentation is crucial during model 
training. This object detection task focuses on detecting volleyball in a relatively limited scene space, resulting in 
higher detection accuracy compared to all-class detection. The final results are as shown in Table 2.
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Table 2. The volleyball object detection results

Methods Datasets mAP aug
R-CNN Custom dataset 63.2 66.3
R-CNN Vd dataset 68.1 70.8
SSD Custom dataset 67.0 71.1
SSD Vd dataset 71.2 72.9
This paper Custom dataset 69.7 73.5
This paper Vd dataset 71.8 74.0

For real-time video stream optimization, we set the sampling interval to 1 second to strike a balance between 
the operational performance in actual applications and algorithm accuracy.

3.2   Human-object Interaction Judgment

We conducted experiments on human interaction detection using the HICO-DET dataset [19], V-COCO dataset 
[20], and a custom dataset. We used the mean average precision (mAP) as the evaluation metric for the model. 
This metric is more relevant in real volleyball applications, focusing on a smaller number of interaction catego-
ries. We consider an output sample as a true positive (TP) only when the predicted HOI output’s human and ob-
ject detection boxes have an IoU (Intersection over Union) value greater than 0.5 with the ground truth and when 
the model correctly predicts the interaction category (i.e., contact).

The image’s feature extraction layer employs the classical ResNet [21] processing, followed by channel di-
mension reduction. We adopt a transfer learning approach, initializing the weight parameters of ResNet, the 
Transformer encoder, and decoder using the pre-trained parameters from DETR [10]. The image input and output 
for human interaction detection are as shown in Fig. 4.

    

Fig. 4. The output of the human interaction tuple includes human and object detection boxes and confidence scores for hu-
man, object, and interaction categories

The final evaluation results for human interaction detection are as shown in Table 3.
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Table 3. The mAP for human interaction detection

Methods HICO-DET V-COCO Custom dataset
FCMNet 29.55 60.63 69.0
PDNet 28.53 58.64 62.41
InteractNet 18.44 43.37 44.24
PPDM 32.92 41.19 67.27
This paper 36.79 62.24 71.78

In the object detection phase of human-object interaction detection, in practice, the output of the multiscale 
object detection network serves as a reference for the detection boxes in the multi-layer perceptron. The detec-
tion results are compared with the output of the multi-layer perceptron, and the CIoU is computed to readjust the 
confidence scores for ball category detection. Experimental validation has shown that this auxiliary input can 
improve the accuracy of ball object detection in the multi-layer perceptron.

3.3   The Sideline Detection Solution

In practical applications, for out-of-bounds ball detection, we utilize a common sideline detection solution. 
As mentioned earlier, after edge detection processing of the image, we apply Hough line detection [22] to 

identify the boundary lines of the volleyball court. In the image, we obtain a collection of lines, denoted as Y = 
{y1, y2, ..., yN}, yi = kix + bi .

After obtaining the object detection box for the volleyball, as mentioned earlier, we continuously monitor for 
a sudden change in the vertical direction of the ball’s speed (determined based on the camera’s relative coordi-
nates). Additionally, we wait for the next 5 frames to check for any signs of human-object contact. If such contact 
is detected, the check is skipped. Otherwise, we conclude that the ball has made contact with the ground. At this 
point, the bottom coordinate Pb = (xb, yb) of the object detection box represents the contact point. Subsequently, 
we use the same-side rule to determine whether this point is contained within the boundary line. If it is not con-
tained, we consider the ball to be out of bounds.

4   Conclusion

This paper divides real-time officiating in volleyball matches into two tasks: small object detection for the volley-
ball and human interaction detection for people, the ball, net, and boundary lines. The object detection task uses 
an improved residual module multiscale detection network, while the human interaction task employs an end-to-
end Transformer module. In the context of real-time volleyball video streams, there has been an improvement in 
mean average precision for all classes, and experiments have shown that this approach can assist in automating 
and semi-automating officiating tasks.

In terms of object detection, this paper employs an improved multiscale neural network approach, allowing the 
model to possess good object detection capabilities at different scales, with particular optimization for the small 
object detection problem of the volleyball. The use of residual connections instead of traditional convolutional 
modules ensures the model’s generalization ability. Additionally, for real-time volleyball video stream scenarios, 
a dynamic adaptive sampling method is provided to alleviate the performance pressure on algorithms in real-time 
settings.

For human interaction detection, this paper adopts an end-to-end solution based on Transformer. It begins by 
extracting image features through multiple convolutions, reducing the dimensionality of the feature channels, and 
then flattening them to serve as input to the Transformer encoder. Position encoding is introduced to learn spatial 
relative position information. The output of the Transformer decoder passes through a multi-layer perceptron to 
eventually obtain the predicted human interaction quintuple. A specific matching loss function is defined, and the 
training phase solves the bipartite matching problem between predicted and real human interaction tuples using 
the KM algorithm.

For automating the judgment of ball hitting the sideline, traditional methods still have some limitations. It may 
be worthwhile to consider using multiple cameras to reconstruct the three-dimensional coordinates of the ball 
and boundary lines for a more precise judgment. The results of object detection can aid in more accurate three-di-
mensional reconstruction.
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Increasing the number of cameras and making a comprehensive judgment from multiple video sources is in-
deed a valuable improvement strategy. Whether in object detection or human interaction detection, strong spatial 
semantic information support is essential, including spatial context information and relative positional informa-
tion. Adding video sources from different angles can not only reduce error rates from a sample size perspective 
but also provide additional spatial semantic information, enhancing the overall officiating capability.
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