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Abstract. Linearizability is a commonly accepted correctness criterion for concurrent data structures. 
Concurrent queues are among the most fundamental concurrent data structures. In this paper, we present nec-
essary and sufficient conditions for proving linearizability of concurrent queues, which make use of lineariza-
tion of dequeue operations. The verification conditions intuitively express the “FIFO” semantics of concurrent 
queues and can be verified just by reasoning about the happened-before order of operations. We have success-
fully applied the proof technique to prove several challenging concurrent queues. We believe that our proof 
technique can be extended to the concurrent data structures which have the ordering requirements when their 
elements are removed.
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1   Introduction

The development of computer hardware technology has led to an era of multi-core CPU. Concurrent data 
structures are widely used to provide high performance for applications running on multi-core computers. 
Linearizability [1] is the standard correctness criterion for concurrent data structures. It requires that every con-
current execution of a concurrent data structure is equivalent to a legal sequential execution of an abstract object 
(called specification). This means that every method appears to take effect atomically at some point, during its 
execution interval. To obtain multi-core scalability and performance, highly-concurrent data structures employ 
sophisticated synchronization techniques, which makes proving their linearizability more difficult.

The typical proof of linearizability is based on forward or backward simulations. The proofs involve con-
structing an abstraction map, which relates the state of the implementation to the state of the specification and 
showing that their executions stay in correspondence under forward or backward program steps. Forward simula-
tion alone is not sufficient in general to verify linearizability, which cannot handle with sophisticated concurrent 
data structures, such as the LCR queue. Backward simulation is a complete proof method for verifying lineariz-
ability. However, the proofs are difficult to understand intuitively and require considerable expertise.

In this paper, we propose a sound proof system that simplifies reasoning about linearizability of concurrent 
queues. Our basic idea is that for any linearizable execution of a concurrent queue, every dequeue operation must 
remove one of the values inserted by the oldest push operations. Building on this idea, we first present a set of 
necessary and sufficient conditions for proving linearizability of concurrent queues. The verification conditions 
are based on linearization of dequeue operations and intuitively characterize the “FIFO” semantics of concurrent 
queues. Informally, the conditions say that an execution of a concurrent queue is linearizable if there exists a 
linearization of dequeue operations such that every dequeue operation removes one of the values inserted by the 
oldest push operations. We need to construct the appropriate linearization of dequeue operations when applying 
the conditions to linearizability verification of concurrent queues. We observed an interesting phenomenon: for 
all concurrent queues [1-6] we have verified, their dequeue operations have the atomic actions which logically or 
physically remove elements of the queues. We further show that the removing actions can be used to construct 
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such linearization.
Our proof technique is intuitive, easy-to-use, and verifiers just need to reason about the happened-before order 

of operations. We have successfully applied the proof technique to several challenging concurrent queues, in-
cluding the TS queue, the LCR queue. To summarize, our contributions are:

1.	 We present a set of necessary and sufficient conditions for proving linearizability of concurrent queues.
2.	 We show that the removing actions of dequeue operations can be used to construct linearization of de-

queue operations.
3.	 We apply our proof technique to prove linearizability of several challenging concurrent queues.
The rest of the paper is structured as follows: Section 2 recalls the definition of linearizability and partially 

ordered sets; Section 3 formalizes the aforementioned properties, and proves that they are necessary and suffi-
cient conditions for proving linearizability of concurrent queues; Section 4 explains that the removing actions of 
dequeue operations can be used to construct linearization of dequeue operations. Section 5 returns to the LCR 
queue and the time-stamped queue examples and presents a detailed manual proof of their correctness; Section 6 
discusses related work, and Section 7 concludes the paper.

2   Preliminaries

In this section, we formalize linearizability of a concurrent data structure with respect to its specification [7-9], 
and introduce basic notations of partially ordered sets.

2.1   Linearizability 

We refer to an execution of a method as an operation. The calling of a method  with argument  is represented 
as an invocation event , and the return of a method with a return value  by a response event 
, where  is an operation identifier. A thread executing a method starts with the invocation event, executes its 
internal atomic actions until the final response event. We denote a concurrent execution as a finite sequence of 
totally ordered atomic events. A history of a concurrent data structure is a sequence of invocation and response 
events generated by an execution of the data structure. An invocation event matches a response event if they 
belong to the same operation. A history is sequential if every invocation event, except possibly the last, is imme-
diately followed by its matching response event. A history is complete if every invocation event has a matching 
response event. An invocation event is pending in a history if there is no matching response event to it. For an 
incomplete history , a completion of , is a complete history gained by adding some matching response events 
to the end of  and removing some pending invocation events within . Let  be the set of all com-
pletions of the history .

Let  denote the happened-before order of operations in the history . For any two operations  and 
 of , we say that  precedes , denoted , if the response event of  precedes the invo-

cation event of  in ; we say that  is interleaved with , denoted by , if  and 
. We sometimes omit the subscripts when the histories are clear from the context.

A sequential history is legal with respect to a sequential specification if it satisfies the sequential specification 
behavior. For example, the sequence: , is legal with respect to the stan-
dard sequential “FIFO” queue specification, where  denotes an enqueue operation with an input parame-
ter ;  denotes a dequeue operation with a return value .

A history  is linearizable with respect to a sequential specification [1] if there exists a complete history 
 and a legal sequential history  such that (1)  is a permutation of ; (2) for any two operations 

, , if , then .  is called a linearization of . The second condition above requires 
that  preserves the happened-before orders of the operations in H. A concurrent data structure is linearizable 
with respect to its sequential specification if every history of the concurrent data structure is linearizable with re-
spect to the sequential specification.

Generally, the standard sequential “FIFO” queue is used to characterize the sequential specification of concur-
rent queues. For a linearizable queue with respect to the standard sequential specification, we sometimes omit the 
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sequential specification for simplicity.
In this paper, we only consider complete histories. As Henzinger et al. have shown [10], a purely-blocking 

data structure is linearizable if every complete history of the concurrent data structure is linearizable. Purely 
blocking is a very weak liveness property, and most of concurrent data structures satisfy the liveness property. 
All concurrent queues verified in this paper are purely blocking.

2.2   Partially Ordered Sets

A strict partial order on a set is an irreflexive, antisymmetric, and transitive relation. Obviously, the happened-be-
fore order  is a strict partial order on the set of the operations of . We say that  is bigger than  with re-
spect to a strict partial order  if . Let  be a strict partial order on the set  and ;  is a maximal 
element of  if ;  is a minimal element of  if ;  is the greatest element of  if  

;  is the smallest element of  if . Let  and  be two partial orders on 
a set ; the partial order  is called an extension of partial order  if, whenever , then . 

A total order  is a linear order if . If a total order is an extension of a partial order, 
then it is called a linear extension of the partial order.

Lemma 1 Let  be a strict partial order on the set , assume the sequence  (where 
) preserves the partial order  (i.e., ). 

Then for any element ,  can be inserted into the sequence such that the new sequence still preserves the 
partial order .

In Appendix A, we show an algorithm by which  can be inserted into a proper position such that the new 
sequence preserves the partial order.

3   Conditions for Linearizability of Concurrent Queues

In this section, we first give the basic technical setting including a formal operational definition of safe matching 
and linearization of dequeue operations. Then, we present our main theorem which gives necessary and sufficient 
conditions for proving linearizability of concurrent queues.

3.1   Safe Matching and Linearization of Dequeue Operations

Let  and  denote the sets of all enqueue and dequeue operations in a history  of a concurrent 
queue, respectively. For simplicity, we assume that all values which are added by enqueue operations are unique. 
We map each dequeue operation to the enqueue operation whose value is removed by the dequeue operation, 
or to  if the dequeue operation returns . We say that a mapping is safe if a dequeue operation always 
returns the value which is added by an enqueue operation or ; the value which is added by an enqueue 
operation is removed at most once. Obviously, for any history of concurrent queues, if there does not exist a safe 
matching, then the history is not linearizable. Every linearizable history has a unique safe matching. We formal-
ize the notion as follows.

Definition 1. A mapping  from  to  is safe if
1.	 . if , then the return value of the dequeue operation is added 

by the enqueue operation .
2.	 . if , then the dequeue operation returns .
3.	 .  i f  , 

then .
A linearization of dequeue operations is a sequence of dequeue operations which preserves the happened-

before order of non-overlapping operations in the original execution. Our main theorem is based on linearizations 
of dequeue operations, which is defined as follows.
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Definition 2. For a history  of a concurrent queue, the sequence  is a linearization of dequeue 
operations of , if .

3.2   Conditions for Linearizability of Concurrent Queues

Any history comprising only the events of enqueue operations is always linearizable. The reason is that lineariz-
ability is a property of externally observable behaviors (i.e., histories) and the return value of an enqueue oper-
ation is always  or the signal . Such histories can be ignored when we verify linearizability of concurrent 
queues. Our queue theorem is stated below.

Theorem 1. Let  be a complete history of a concurrent queue containing the events of dequeue operations. 
 is linearizable with respect to the standard sequential queue specification iff there exists a linearization of de-

queue operations , and a safe mapping  , such that:
1.	 . if , let the set . 

then  and  ;
2.	 . If , let       

,  then  (1) ; 
(2)   .

For a dequeue operation ,  is a set of the enqueue operations whose values have not been removed 
by the dequeue operations ahead of  (i.e., the dequeue operations: ).  Informally, the first 
condition requires that each non-empty dequeue operation (i.e., it does not return )  always removes 
the value of a minimal enqueue operation (w.r.t. ) in the set . 

 is a set of the enqueue operations which are interleaved with  and whose values have not been re-
moved by the dequeue operations ahead of . The second condition requires that for any enqueue operation 
which precedes the empty dequeue operation , the value of the enqueue operation is removed  by a dequeue 
operation ahead of ; for any enqueue operation in the set ,  the enqueue operation does not precede any 
dequeue operation ahead of .

The following proof of Theorem 1 is written in a hierarchically structured style as advocated by Lamport [11].
Proof ( ). We first prove that the theorem holds when  does not contain the empty dequeue operations, 

then further extend the result to the case where  contains this kind of dequeue operations.
1.  is linearizable when  does not contain the empty dequeue operations.
Proof. We construct a sequential history  by inserting every enqueue operation of  into the sequence 

, and show that  is a linearization of .  is constructed by the following steps:
Step 1.  , let , we first insert  , one after another, into 

the sequence . For , we insert it before . Since for all dequeue operation , 
 (by the first condition of Theorem 1), the new sequence preserves the happened-before order  

after the inserting operation. 
We can insert  between and , by using Algorithm 1 (in Appendix A), i.e., if 

, insert it into the right of  (i.e., ); otherwise, insert it into the left of  (i.e., 
). Since  and , after the inserting operation, the new 

sequence (either  or ) preserves the happened-be-
fore order . 

Similarly, for each , we insert  between  and , by using Algorithm 1. After 
inserting  , we get the following properties.

(1) In terms of the first condition of Theorem 1, we get that . Thus, in the 
new sequence, any two enqueue operations do not violate the happened-before order  (i.e., for any two en-
queue operations  and , if  precedes  in the new sequence, then  ).

(2)  does not violate the happened-before order with the dequeue operations on the left of  
(if any). The reason for this is as follows. Assume  is a dequeue operation on the left of . By 
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Algorithm 1, there exists an enqueue operation  such that . Since , 
.

(3) In terms of the first condition of Theorem 1, we get that , thus,  does not violate 
the happened-before order with the dequeue operations on the right of . Thus, after the inserting actions, the 
new sequence preserves the happened-before order .

Step 2. Assume that the sequence  is a linear extension of the partial order  on the 
rest of  (i.e., there is no dequeue operation which is mapped to ). We insert the enqueue opera-
tions , one after another, into the new sequence constructed by step 1.

For each , we insert   between  and the end of the sequence, by using Algorithm 
1. Since , and  does not violate the happened-before order 
with the dequeue operations on the left of   (we can get it, similar to the above proof ), after the insert-
ing action, the new sequence preserves  the happened-before order .

By the process of constructing ,  preserves the happened-before order , and satisfies the “FIFO” se-
quential semantics. Thus, the sequential history  is a linearization of .

2.  is linearizable when  contains the empty dequeue operations.
Proof.  We construct the linearization of  by the following process. If , let  denote the 

linearization of   and their matching enqueue operations (constructed by the above method), let 
 denote the linearization of the other operations of . Let  , where the notation  denotes the 

concatenation of sequences. Obviously, any two dequeue operations of  do not violate the happened-before or-
der .

In the following, we show that in  (1) any two enqueue operations do not violate the happened-before order 
 and (2) any dequeue operation does not violate the happened-before order  with any enqueue operation. 

Let  and  be an enqueue operation and a dequeue operation in , respectively. Let  and  
be an enqueue operation and a dequeue operation in , respectively. Since , 

. By the first condition of Theorem 1, we get . If , by the second con-
dition of Theorem 1, . If  , obviously, .

Proof ( ). Since  is linearizable, there exists a safety mapping  from  to . We 
assume that  is a linearization of . Let  be the maximal subsequence of  consisting of 
dequeue operations. Obviously, it is a linearization of the dequeue operations of . Based on the linearization of 
the dequeue operations and the safety mapping , we show that the two conditions of Theorem 1 hold.

1. . if , let the set , then 
 and .

Proof. Since  is a sequential execution and satisfies the “FIFO” semantics, . Since 
the linear order  is a linear extension of , . Since , and 

.
2. . If , let  

,  t h e n  ( 1 )  ;  ( 2 ) 
.

Proof. If an enqueue operation  , then . Since   satisfies the “FIFO” se-
mantics, the value inserted by the enqueue operation  is removed by a previous dequeue operation, i.e., 

.
If an enqueue operation , then . Since , . 

Thus,  (since  is a linear extension of  ).
Example 1 Consider the following history . Next, we will prove linearizability of the execution using the 

above theorem. For simplicity, let  denote the invocation event of an enqueue operation  with an input 
parameter , and  be its matching response event; denote the invocation event of a dequeue operation , 

 be its matching response event with a return value .
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The history has a unique safe matching, . We choose 
the linearization of dequeue operations,  to verify the linearizability.  removes the value inserted 
by  (i.e., ),  is minimal in the set and  . Thus, for the 
dequeue operation , the first condition is satisfied. Since   and  is minimal in the set 

, the first condition is satisfied in this case. Similarly, d3 also satisfies the first condition. Thus, the his-
tory is linearizable.

4   Constructing Linearization of  Dequeue Operations

We need to construct appropriate linearization of dequeue operations when applying the queue theorem to linear-
izability verification of concurrent queues. For all concurrent queues we have verified [1-6], the atomic actions 
of dequeue operations which logically or physically remove values can be used to construct such linearizations. 
If there exists a logical removing action in a non-empty dequeue operation, then the removing action is chosen 
for constructing linearization; otherwise, the physical removing action is chosen. The physical removing action 
of a dequeue operation physically removes a value in the queue. The logical removing action of a dequeue oper-
ation only fixes a value in the queue, after the execution of the logical removing action, other dequeue operations 
cannot logically remove the value. A linearization of dequeue operations constructed by using their removing ac-
tions is a sequence where the dequeue operations are arranged in the execution order of these removing actions. 
Obviously, the initial linearization of the dequeue operations can be easily constructed in terms of the removing 
actions. We show that in general case the removing actions of non-empty dequeue operations can be used to con-
struct such linearization.

For simplicity, we only consider the executions containing two dequeue operations where their removing ac-
tions cannot be used to construct such linearization. Two basic example executions are shown in Fig. 1 and Fig. 
2.

Fig. 1. dequeue(x) begins to execute before the removing action of dequeue(y)

In these figures, the black circles of the dequeue operations stand for the logical or physical remov-
ing actions;  denotes the enqueue operation with an input parameter ; 

 denotes the dequeue operation with a return value .
In Fig. 1,  begins to execute before the removing action of . The only linearization of 

the execution is . The linearization of the two dequeue op-
erations constructed in terms of the two removing actions is . Under the linearization 
of the two dequeue operations, the first condition of Theorem 1 is not satisfied. Thus, the two removing actions 
cannot be used to construct linearization of dequeue operations.

If there is no , then the dequeue operation of the thread T4 will remove the value  inserted by 
, to make the execution linearizable. Thus, the  actions before the  re-

moving action affect the execution of the dequeue operation of the thread T4, and prevent it observing the value 
inserted by . Such dequeue methods are uncommon. Generally, for a lock-free concurrent queue, 
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except for the logical and physical removing actions, the actions do not prevent the values of the queue from be-
ing removed by other dequeue operations. For most of concurrent queues we have verified, the actions before the 
removing action of a dequeue operation either read the shared state or access (read or write) the local state, and 
do not affect the executions of other dequeue operations.

In Fig. 2,  removes the value  before  begins to execute. If there is no 
, then  also removes the value . In this case, the execution of the three operations is not lineariz-
able. Thus, such dequeue algorithms are basically nonexistent.

Fig. 2. dequeue(x) begins to execute after the removing action of dequeue(y)

5   Examples 

We illustrate our technique on the LCR queue and the TS queue. Proving linearizability of the two queues are 
challenging because their enqueue methods do not have fixed linearization points. The linearization points of the 
two enqueue methods depend on future executions of dequeue operations.

5.1   Verifying the LCR Queue

The LCR queue [4] shown in Fig. 3 is represented as an infinite size array, item, and two markers,  and , 
pointing to the head and end of the interval of the array that may contain values, respectively. The queue reserves 
two special values  and  that are distinct from any element enqueued by the enqueue operations. Each cell 

 is initialized to the reserved value .
An enqueue operation first obtains a cell index  by performing a Fetch-and-Add (FAA) atomic instruction 

(line L7) on , which returns the value  of  and changes  value to . Then it updates the val-
ue of  to  by the Swap atomic instruction (line L8), which returns the value of  and changes 

 value to . If the Swap instruction returns , the enqueue operation returns ; otherwise (this means 
that the Swap instruction returns ), the enqueue operation tries again.

Fig. 3. the LCR queue
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A dequeue operation first obtains a cell index  by performing a FAA atomic instruction on . Then it 
updates the value of   to  by the Swap instruction. If the Swap instruction returns a value  , then 
the dequeue operation completes and returns ; otherwise (this means that the Swap instruction returns  ), (1) if 

, the dequeue operation returns empty; (2) otherwise, the dequeue operation tries again.
If an enqueue operation deposits a value  into the cell which does not contain  (this means that the cell con-

tains , and has been visited by some dequeue operation), the value  stored in the cell will not be dequeued by 
any dequeue operation. Thus, an enqueue operation deposits only one value which may be dequeued. Since a cell 
is updated by no more than one dequeue operation, the value in a cell is dequeued at most once. Thus, for a com-
plete history  of the LCR queue, there is a safe mapping  from  to  and .

Let  denote the last FAA instruction of the enqueue/dequeue operation . Let   
denote the happened-before order of atomic actions in an execution. For the enqueue/dequeue operation  
/ , let the superscript  denote the return value of . Obviously, there are the following 
properties:

For two enqueue operations  and  in a history , if , then ; for two dequeue 
operations  and  in a history , if , then ; if , then .

The last FAA action  of a dequeue operation is a logical removing action. After the last 
FAA action of a non-empty dequeue operation is executed,  is logically removed, i.e., other dequeue 
operations cannot logically or physically remove  again.

Theorem 2. Every complete history  of the LCR queue is linearizable with respect to the standard sequential 
queue specification.

Proof. Assume  is the linearization of the dequeue operations constructed in terms of 
their logical removing actions. Based on the linearization and the safe mapping , we show that the LCR 
queue satisfies the two conditions of Theorem 1.

1. . if , let the set . then 
 and .

Proof. By the removing actions of dequeue operations, we get . By , we get the return 
value of the last FAA instruction of  is . Assume the return value of the last FAA instruction of 

 is . Consider the following two cases: If , then 
. By , we get . If , 
then . By , we get .

By , we can get . Let  denote the last Swap in-
struction of  . By , we can get . Thus, 

.
2. . If , let  

,  t h e n  ( 1 )  ;  ( 2 )  
.

Proof. Since ,  is true at the time point while the last statement if 
(  ) of  is executed. Assume . Since at the above time point, 
, . Since  and , . Thus, . Since all cells from  to 

 have been updated by dequeue operations before , .
A s s u m e  ,  w e  c a n  g e t  .  I f  

,  t h e n   a t  t h e  t i m e  p o i n t  w h i l e  t h e  l a s t  s t a t e m e n t  i f  (
) of  is executed. This contradicts the fact:  is true at the above time point. Thus, 

.  S i n c e  , 

. Thus .
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5.2   Verifying the Time-Stamped Queue

Fig. 4 shows the pseudo code for the time-stamped (TS) queue [5]. We use  operator for timestamp compar-
ison. For two timestamps  and , we say that  is bigger than , if ;  and  are incomparable, if 

 and . For two operations  and ,    if the timestamp generated by the oper-
ation  is bigger than the one generated by the operation . Let  denote the maximal value of timestamps. 
There are a number of implementations of the time stamping algorithm. All these implementations guarantee that 
(1) in a sequential execution of two calls to the algorithm, the latter returns a bigger timestamp than the former 
and (2) a concurrent and overlapping execution of two calls to the algorithm generates two incomparable time-
stamps.

This queue maintains an array  of singly-linked lists (i.e., instances of ), one for each thread. 
Each node of the list contains a data value (field ), a timestamp (field ), a next pointer (field 

). Each list contains a  pointer which points to the end of the list, a  pointer which points to the 
first node (a sentinel node) of the list. Initially both the  and  pointers point to the sentinel node indi-
cating that the list is empty. The  pointer of a list is annotated with an ABA-counter to avoid the ABA-
problem [12]. The methods of the  list are as follows.

1.	 insert(v) - inserts a node with a value v and a timestamp , to the end of the list and returns a reference to 
the new node.

2.	 getOldest - returns a reference to the node with the oldest timestamp, or  if the list is empty, together 
with the top pointer of the list.

3.	 remove(node) - tries to remove the given node from the list. Returns  and the value of the node if it 
succeeds, or returns  and  otherwise.

These methods of  are linearizable, and can be viewed as atomic actions. The Enqueue method first 
inserts an element into its associated list (line E3), then generates a timestamp (line E4) and sets the timestamp 
field of the new node to the new timestamp (line E5).

The dequeue method first generates a timestamp  (line D4), attempts to remove an element by calling 
the method tryRem. The tryRem method traverses every list, searching for a node with a minimal timestamp to 
remove (line T7-T20). Note that the search starts from a random list, to make different threads more likely to pick 
different elements for removal and reduce data contention. If the timestamp  of the candidate node  

 is bigger than the timestamp  (line T29), the candidate is invalid, the tryRem method returns 
 (line T30), then the dequeue method restarts. If the candidate node  is valid, the tryRem meth-

od tries to remove it (line T31).
During the traversing of the tryRem method, if it finds an empty list, then the top pointer of the empty list is 

recorded in the array  (line T10-T13). After the traversing, if no candidate node for removal is found 
(line T22), then the tryRem method traverses all lists again to check whether their top pointers have changed 
(line T23-T26). If not, the tryRem method returns empty (line T27), and then the dequeue method returns empty. 
Otherwise, the tryRem method returns false (line T25), and then the dequeue method restarts. If all top pointers 
have not changed, all lists must have been empty between the first (line T7) and second (line T23) traversal (be-
cause the top pointers are annotated with ABA-counters).

Theorem 3 states that the TS queue is linearizable, and the following lemma is used in the proof of Theorem 
3.

Lemma 2. For a non-empty dequeue operation, , let  be the set of the nodes which are still in the lists 
while the final removing action T31 of  is executed; let  be the set of the enqueue operations which insert 
the nodes of .  is minimal w.r.t. the happened-before order in the set .

Proof. The final candidate node of  is inserted by . During the final traversing of , there 
are two kinds of lists: the empty lists---are empty when  visits them, and the non-empty lists---are not empty 
when   visits them.

1. For a non-empty list, if the timestamp of the oldest node of the list is not  when  visits it, then the en-
queue operation inserting the oldest node does not precede .

Proof. The timestamp of the final candidate node of  is not bigger than the timestamp of the oldest node of 
the non-empty list (by T15). Thus, the enqueue operation inserting the oldest node does not precede .
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2. For a non-empty list, if the timestamp of the oldest node of the list is  when  visits it, then the enqueue 
operation inserting the oldest node does not precede .

Proof. Let  be the enqueue operation inserting the oldest node.  does not complete the action E5 
(sets the timestamp field of the oldest node) when  visits it. Thus, the action D4 (generating timestamp) of 

 precedes the action E5 of . Since the timestamp of  is not bigger than the timestamp of 
 (by T29), the action D4 of  does not precede the action E4 (generating timestamp) of 

. Thus, the action E5 of  does not precede the action E4 of . Thus,  does not 
precede .

3. For the empty lists, if some nodes are inserted into the empty lists after  visits them, then the enqueue 
operations inserting the nodes do not precede .

Proof. Assume that an enqueue operation  inserts a node into an empty list after  visits the empty list. 
When  visits the empty list,  does not complete its inserting action. The timestamp of  is gener-
ated by E4 after the inserting action E3. Thus, the timestamp of  is bigger than the one of . By the state-
ment T29, the timestamp of  is not bigger than the one of . Thus, the timestamp of  
is not bigger than the one of . Thus, the enqueue operation  does not precede .

4. Q.E.D.
Proof. By 1 and 2, for any non-empty list, the enqueue operation inserting the oldest node does not precede 

. Thus, the enqueue operations inserting other nodes do not also precede . By 3, for any 
empty list, the enqueue operations inserting the nodes into the empty list do not precede .

Fig. 4. The TS queue

An enqueue operation always inserts a node into a list; a dequeue method either removes a node from a list 
and returns the value of the node or returns empty; a node is removed at most once. Thus, for a complete history 

 of the TS queue, there is a safe mapping  from  to  and .
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Theorem 3. Every complete history  of the TS queue is linearizable with respect to the standard sequential 
queue specification.

Proof. For a non-empty dequeue operation, we choose the successful removing node action of the tryRem 
method (T31) to construct the linearization of dequeue operations; for an empty dequeue operation, we choose T22 
(at the time point, all lists are empty). Assume  is a linearization of the dequeue operations 
constructed in terms of these atomic actions. Based on the linearization and the safe mapping , we prove 
that the TS queue satisfies the two conditions of Theorem 1.

1. . if , let the set , then 
 and .

Proof. Obviously,  completes its inserting action E3 before the removing action T31 of  . 
If  does not complete its inserting action before the removing action of , then 
. If  completes its inserting action before the removing action of , then the node inserted by  is not 
removed before the removing action of  (by  ). By Lemma 2, . Since the 
inserting node action of  precedes the removing node action of , and the removing node action 
of  precedes the removing node action of , .

2. . If , let 
,  t h e n  ( 1 )  ;  ( 2 ) 

.
Proof. Since  returns , all lists must have been empty at the time point when the statement T22 of 

 is executed. Thus, for all enqueue operations which precede , the values inserted by them are removed 
by the previous dequeue operations (i.e.,  ).

At the above time point, any enqueue operation  has not completed the inserting action (E3), any 
previous dequeue operation , has completed the removing action (T31). Thus, .

6   Related Work

There has been a great deal of work on linearizability verification [13-27]. Mainly, there are four kinds of ver-
ification techniques: refinement-based techniques, simulation-based techniques, reduction-based techniques, 
program-logic-based techniques. An interested reader may refer to the survey article [13]. However, proving lin-
earizability of sophisticated concurrent data structures is still a challenging task.

Much work on proving linearizability is based on different kinds of simulation proofs [17-20]. As we ex-
plained in Section 1, forward simulation alone is not sufficient in general to verify linearizability. However, 
Schellhorn et al. prove that backward simulation alone is always sufficient. However, backward simulation 
proofs are difficult to understand intuitively and require considerable expertise.

Bouajjani et al. propose a forward simulation technique for proving linearizability [17]. They have successful-
ly applied the method to prove the HW queue. In fact, for the HW queue, there does not exist a forward simula-
tion to the standard sequential queue. They need to construct a deterministic atomic reference implementation (as 
an intermediate specification) for the concurrent queue, and the linearizability proof is reduced to showing that 
the HW queue is forward-simulated by the intermediate specification.

Schellhorn et al. propose a backward simulation technique for proving linearizability [20]. Their proof tech-
nique can deal with concurrent data structures where the linearization points are not fixed, but the proofs are con-
ceptually more complex and less amenable to automation.

One related approach to ours is that of Henzinger et al. [10] (called Aspect-oriented proof technique), which 
reduces the task of proving linearizability of concurrent queues to establishing four basic properties, each of 
which can be proved independently. For the non-empty dequeue operations, their proof technique needs to verify 
the following key property: if for two non-overlapping enqueue operations  and ,  precedes 
, then the value inserted by  cannot be removed earlier than the one inserted by  (i.e.,  cannot 
precede  where  removes the value inserted by ). For the empty dequeue operations, 
they propose a primitive verification condition, which requires that there exists a subset of enqueue operations 
containing the enqueue operations which precede the empty dequeue operation such that the empty dequeue 
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operation does not precede any of their matching dequeue operations and an enqueue operation which precedes 
any of their matching dequeues operation also belongs to the subset. In comparison with the Aspect-Oriented 
proof technique, our verification conditions make use of the removing actions of dequeue operations, intuitively 
characterize the “FIFO” semantics of concurrent queues and can be transformed into the following state-based 
invariant: when the removing action of a dequeue operation logically or physically removes a value, the value is 
the oldest value in the current queue. 

Khyzha et al. propose a verification technique based on partial orders [14] that is related to our work. The key 
idea of their technique is to incrementally construct an abstract history—a partially ordered history of operations; 
the linearizability proof is reduced to establish a simulation between its execution and a growing abstract history. 
They formalize the technique as a program logic based on rely-guarantee reasoning, have applied it to verify the 
HW queue, the TS queue and the optimistic set [27]. Their proof technique is generic and can handle concurrent 
data structures with non-fixed linearization points. However, the proof technique relies on program logic and 
needs to construct a partially ordered history.

7   Conclusion

We present a simple and complete proof technique for verifying linearizability of concurrent queues. Our proof 
technique reduces the problem of proving linearizability of concurrent queues to establishing a set of conditions 
based on the happened-before orders of operations. The verification conditions can be easily verified, design-
ers can easily and quickly learn to use the proof technique. We have successfully applied the proof technique 
to several concurrent queues: the TS queue and the LCR queue, etc. However, our proof technique is limited to 
concurrent data queues. We believe that our proof technique can be extended to prove the concurrent data struc-
tures which have the ordering requirements when their elements are removed, such as priority queues. We plan to 
pursue this direction in future work.
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Appendix A: Algorithm 1 

By using Algorithm 1,  can be inserted into a proper position such that the new sequence preserves the partial 
order. The algorithm is also used in the proof of Theorem 1.


