
Journal of Computers Vol. 35 No. 5, October 2024, pp. 91-103
doi: 10.53106/199115992024103505007

91* Corresponding Author

Proving Linearizability of Concurrent Queues

Jie Peng1,2, Tangliu Wen1*, and Dongming Jiang3

1 Department of Information Engineering, Gannan University of Science and Technology, Ganzhou, China
gnkj2024@163.com.cn

2 Ganzhou Cloud Computing and Big Data Research Center, Ganzhou, China
wqtlglk@163.com.cn

3 School of Big Data, Jiangxi Science & Technology Normal University, Nanchang, China
cctjdm@jxust.edu.cn

Received 16 April 2024; Revised 30 May 2024; Accepted 6 August 2024

Abstract. Linearizability is a commonly accepted correctness criterion for concurrent data structures.
Concurrent queues are among the most fundamental concurrent data structures. In this paper, we present nec-
essary and sufficient conditions for proving linearizability of concurrent queues, which make use of lineariza-
tion of dequeue operations. The verification conditions intuitively express the “FIFO” semantics of concurrent
queues and can be verified just by reasoning about the happened-before order of operations. We have success-
fully applied the proof technique to prove several challenging concurrent queues. We believe that our proof
technique can be extended to the concurrent data structures which have the ordering requirements when their
elements are removed.

Keywords: concurrent queues, linearizability, verification, happened-before order

1 Introduction

The development of computer hardware technology has led to an era of multi-core CPU. Concurrent data
structures are widely used to provide high performance for applications running on multi-core computers.
Linearizability [1] is the standard correctness criterion for concurrent data structures. It requires that every con-
current execution of a concurrent data structure is equivalent to a legal sequential execution of an abstract object
(called specification). This means that every method appears to take effect atomically at some point, during its
execution interval. To obtain multi-core scalability and performance, highly-concurrent data structures employ
sophisticated synchronization techniques, which makes proving their linearizability more difficult.

The typical proof of linearizability is based on forward or backward simulations. The proofs involve con-
structing an abstraction map, which relates the state of the implementation to the state of the specification and
showing that their executions stay in correspondence under forward or backward program steps. Forward simula-
tion alone is not sufficient in general to verify linearizability, which cannot handle with sophisticated concurrent
data structures, such as the LCR queue. Backward simulation is a complete proof method for verifying lineariz-
ability. However, the proofs are difficult to understand intuitively and require considerable expertise.

In this paper, we propose a sound proof system that simplifies reasoning about linearizability of concurrent
queues. Our basic idea is that for any linearizable execution of a concurrent queue, every dequeue operation must
remove one of the values inserted by the oldest push operations. Building on this idea, we first present a set of
necessary and sufficient conditions for proving linearizability of concurrent queues. The verification conditions
are based on linearization of dequeue operations and intuitively characterize the “FIFO” semantics of concurrent
queues. Informally, the conditions say that an execution of a concurrent queue is linearizable if there exists a
linearization of dequeue operations such that every dequeue operation removes one of the values inserted by the
oldest push operations. We need to construct the appropriate linearization of dequeue operations when applying
the conditions to linearizability verification of concurrent queues. We observed an interesting phenomenon: for
all concurrent queues [1-6] we have verified, their dequeue operations have the atomic actions which logically or
physically remove elements of the queues. We further show that the removing actions can be used to construct

92

Proving Linearizability of Concurrent Queues

such linearization.
Our proof technique is intuitive, easy-to-use, and verifiers just need to reason about the happened-before order

of operations. We have successfully applied the proof technique to several challenging concurrent queues, in-
cluding the TS queue, the LCR queue. To summarize, our contributions are:

1.	 We present a set of necessary and sufficient conditions for proving linearizability of concurrent queues.
2.	 We show that the removing actions of dequeue operations can be used to construct linearization of de-

queue operations.
3.	 We apply our proof technique to prove linearizability of several challenging concurrent queues.
The rest of the paper is structured as follows: Section 2 recalls the definition of linearizability and partially

ordered sets; Section 3 formalizes the aforementioned properties, and proves that they are necessary and suffi-
cient conditions for proving linearizability of concurrent queues; Section 4 explains that the removing actions of
dequeue operations can be used to construct linearization of dequeue operations. Section 5 returns to the LCR
queue and the time-stamped queue examples and presents a detailed manual proof of their correctness; Section 6
discusses related work, and Section 7 concludes the paper.

2 Preliminaries

In this section, we formalize linearizability of a concurrent data structure with respect to its specification [7-9],
and introduce basic notations of partially ordered sets.

2.1 Linearizability

We refer to an execution of a method as an operation. The calling of a method with argument is represented
as an invocation event , and the return of a method with a return value by a response event
, where is an operation identifier. A thread executing a method starts with the invocation event, executes its
internal atomic actions until the final response event. We denote a concurrent execution as a finite sequence of
totally ordered atomic events. A history of a concurrent data structure is a sequence of invocation and response
events generated by an execution of the data structure. An invocation event matches a response event if they
belong to the same operation. A history is sequential if every invocation event, except possibly the last, is imme-
diately followed by its matching response event. A history is complete if every invocation event has a matching
response event. An invocation event is pending in a history if there is no matching response event to it. For an
incomplete history , a completion of , is a complete history gained by adding some matching response events
to the end of and removing some pending invocation events within . Let be the set of all com-
pletions of the history .

Let denote the happened-before order of operations in the history . For any two operations and
 of , we say that precedes , denoted , if the response event of precedes the invo-

cation event of in ; we say that is interleaved with , denoted by , if and
. We sometimes omit the subscripts when the histories are clear from the context.

A sequential history is legal with respect to a sequential specification if it satisfies the sequential specification
behavior. For example, the sequence: , is legal with respect to the stan-
dard sequential “FIFO” queue specification, where denotes an enqueue operation with an input parame-
ter ; denotes a dequeue operation with a return value .

A history is linearizable with respect to a sequential specification [1] if there exists a complete history
 and a legal sequential history such that (1) is a permutation of ; (2) for any two operations

, , if , then . is called a linearization of . The second condition above requires
that preserves the happened-before orders of the operations in H. A concurrent data structure is linearizable
with respect to its sequential specification if every history of the concurrent data structure is linearizable with re-
spect to the sequential specification.

Generally, the standard sequential “FIFO” queue is used to characterize the sequential specification of concur-
rent queues. For a linearizable queue with respect to the standard sequential specification, we sometimes omit the

93

Journal of Computers Vol. 35 No. 5, October 2024

sequential specification for simplicity.
In this paper, we only consider complete histories. As Henzinger et al. have shown [10], a purely-blocking

data structure is linearizable if every complete history of the concurrent data structure is linearizable. Purely
blocking is a very weak liveness property, and most of concurrent data structures satisfy the liveness property.
All concurrent queues verified in this paper are purely blocking.

2.2 Partially Ordered Sets

A strict partial order on a set is an irreflexive, antisymmetric, and transitive relation. Obviously, the happened-be-
fore order is a strict partial order on the set of the operations of . We say that is bigger than with re-
spect to a strict partial order if . Let be a strict partial order on the set and ; is a maximal
element of if ; is a minimal element of if ; is the greatest element of if

; is the smallest element of if . Let and be two partial orders on
a set ; the partial order is called an extension of partial order if, whenever , then .

A total order is a linear order if . If a total order is an extension of a partial order,
then it is called a linear extension of the partial order.

Lemma 1 Let be a strict partial order on the set , assume the sequence (where
) preserves the partial order (i.e.,).

Then for any element , can be inserted into the sequence such that the new sequence still preserves the
partial order .

In Appendix A, we show an algorithm by which can be inserted into a proper position such that the new
sequence preserves the partial order.

3 Conditions for Linearizability of Concurrent Queues

In this section, we first give the basic technical setting including a formal operational definition of safe matching
and linearization of dequeue operations. Then, we present our main theorem which gives necessary and sufficient
conditions for proving linearizability of concurrent queues.

3.1 Safe Matching and Linearization of Dequeue Operations

Let and denote the sets of all enqueue and dequeue operations in a history of a concurrent
queue, respectively. For simplicity, we assume that all values which are added by enqueue operations are unique.
We map each dequeue operation to the enqueue operation whose value is removed by the dequeue operation,
or to if the dequeue operation returns . We say that a mapping is safe if a dequeue operation always
returns the value which is added by an enqueue operation or ; the value which is added by an enqueue
operation is removed at most once. Obviously, for any history of concurrent queues, if there does not exist a safe
matching, then the history is not linearizable. Every linearizable history has a unique safe matching. We formal-
ize the notion as follows.

Definition 1. A mapping from to is safe if
1.	 . if , then the return value of the dequeue operation is added

by the enqueue operation .
2.	 . if , then the dequeue operation returns .
3.	 . i f ,

then .
A linearization of dequeue operations is a sequence of dequeue operations which preserves the happened-

before order of non-overlapping operations in the original execution. Our main theorem is based on linearizations
of dequeue operations, which is defined as follows.

94

Proving Linearizability of Concurrent Queues

Definition 2. For a history of a concurrent queue, the sequence is a linearization of dequeue
operations of , if .

3.2 Conditions for Linearizability of Concurrent Queues

Any history comprising only the events of enqueue operations is always linearizable. The reason is that lineariz-
ability is a property of externally observable behaviors (i.e., histories) and the return value of an enqueue oper-
ation is always or the signal . Such histories can be ignored when we verify linearizability of concurrent
queues. Our queue theorem is stated below.

Theorem 1. Let be a complete history of a concurrent queue containing the events of dequeue operations.
 is linearizable with respect to the standard sequential queue specification iff there exists a linearization of de-

queue operations , and a safe mapping , such that:
1.	 . if , let the set .

then and ;
2.	 . If , let

, then (1) ;
(2) .

For a dequeue operation , is a set of the enqueue operations whose values have not been removed
by the dequeue operations ahead of (i.e., the dequeue operations:). Informally, the first
condition requires that each non-empty dequeue operation (i.e., it does not return) always removes
the value of a minimal enqueue operation (w.r.t.) in the set .

 is a set of the enqueue operations which are interleaved with and whose values have not been re-
moved by the dequeue operations ahead of . The second condition requires that for any enqueue operation
which precedes the empty dequeue operation , the value of the enqueue operation is removed by a dequeue
operation ahead of ; for any enqueue operation in the set , the enqueue operation does not precede any
dequeue operation ahead of .

The following proof of Theorem 1 is written in a hierarchically structured style as advocated by Lamport [11].
Proof (). We first prove that the theorem holds when does not contain the empty dequeue operations,

then further extend the result to the case where contains this kind of dequeue operations.
1. is linearizable when does not contain the empty dequeue operations.
Proof. We construct a sequential history by inserting every enqueue operation of into the sequence

, and show that is a linearization of . is constructed by the following steps:
Step 1. , let , we first insert , one after another, into

the sequence . For , we insert it before . Since for all dequeue operation ,
 (by the first condition of Theorem 1), the new sequence preserves the happened-before order

after the inserting operation.
We can insert between and , by using Algorithm 1 (in Appendix A), i.e., if

, insert it into the right of (i.e.,); otherwise, insert it into the left of (i.e.,
). Since and , after the inserting operation, the new

sequence (either or) preserves the happened-be-
fore order .

Similarly, for each , we insert between and , by using Algorithm 1. After
inserting , we get the following properties.

(1) In terms of the first condition of Theorem 1, we get that . Thus, in the
new sequence, any two enqueue operations do not violate the happened-before order (i.e., for any two en-
queue operations and , if precedes in the new sequence, then).

(2) does not violate the happened-before order with the dequeue operations on the left of
(if any). The reason for this is as follows. Assume is a dequeue operation on the left of . By

95

Journal of Computers Vol. 35 No. 5, October 2024

Algorithm 1, there exists an enqueue operation such that . Since ,
.

(3) In terms of the first condition of Theorem 1, we get that , thus, does not violate
the happened-before order with the dequeue operations on the right of . Thus, after the inserting actions, the
new sequence preserves the happened-before order .

Step 2. Assume that the sequence is a linear extension of the partial order on the
rest of (i.e., there is no dequeue operation which is mapped to). We insert the enqueue opera-
tions , one after another, into the new sequence constructed by step 1.

For each , we insert between and the end of the sequence, by using Algorithm
1. Since , and does not violate the happened-before order
with the dequeue operations on the left of (we can get it, similar to the above proof), after the insert-
ing action, the new sequence preserves the happened-before order .

By the process of constructing , preserves the happened-before order , and satisfies the “FIFO” se-
quential semantics. Thus, the sequential history is a linearization of .

2. is linearizable when contains the empty dequeue operations.
Proof. We construct the linearization of by the following process. If , let denote the

linearization of and their matching enqueue operations (constructed by the above method), let
 denote the linearization of the other operations of . Let , where the notation denotes the

concatenation of sequences. Obviously, any two dequeue operations of do not violate the happened-before or-
der .

In the following, we show that in (1) any two enqueue operations do not violate the happened-before order
 and (2) any dequeue operation does not violate the happened-before order with any enqueue operation.

Let and be an enqueue operation and a dequeue operation in , respectively. Let and
be an enqueue operation and a dequeue operation in , respectively. Since ,

. By the first condition of Theorem 1, we get . If , by the second con-
dition of Theorem 1, . If , obviously, .

Proof (). Since is linearizable, there exists a safety mapping from to . We
assume that is a linearization of . Let be the maximal subsequence of consisting of
dequeue operations. Obviously, it is a linearization of the dequeue operations of . Based on the linearization of
the dequeue operations and the safety mapping , we show that the two conditions of Theorem 1 hold.

1. . if , let the set , then
 and .

Proof. Since is a sequential execution and satisfies the “FIFO” semantics, . Since
the linear order is a linear extension of , . Since , and

.
2. . If , let

, t h e n (1) ; (2)
.

Proof. If an enqueue operation , then . Since satisfies the “FIFO” se-
mantics, the value inserted by the enqueue operation is removed by a previous dequeue operation, i.e.,

.
If an enqueue operation , then . Since , .

Thus, (since is a linear extension of).
Example 1 Consider the following history . Next, we will prove linearizability of the execution using the

above theorem. For simplicity, let denote the invocation event of an enqueue operation with an input
parameter , and be its matching response event; denote the invocation event of a dequeue operation ,

 be its matching response event with a return value .

96

Proving Linearizability of Concurrent Queues

The history has a unique safe matching, . We choose
the linearization of dequeue operations, to verify the linearizability. removes the value inserted
by (i.e.,), is minimal in the set and . Thus, for the
dequeue operation , the first condition is satisfied. Since and is minimal in the set

, the first condition is satisfied in this case. Similarly, d3 also satisfies the first condition. Thus, the his-
tory is linearizable.

4 Constructing Linearization of Dequeue Operations

We need to construct appropriate linearization of dequeue operations when applying the queue theorem to linear-
izability verification of concurrent queues. For all concurrent queues we have verified [1-6], the atomic actions
of dequeue operations which logically or physically remove values can be used to construct such linearizations.
If there exists a logical removing action in a non-empty dequeue operation, then the removing action is chosen
for constructing linearization; otherwise, the physical removing action is chosen. The physical removing action
of a dequeue operation physically removes a value in the queue. The logical removing action of a dequeue oper-
ation only fixes a value in the queue, after the execution of the logical removing action, other dequeue operations
cannot logically remove the value. A linearization of dequeue operations constructed by using their removing ac-
tions is a sequence where the dequeue operations are arranged in the execution order of these removing actions.
Obviously, the initial linearization of the dequeue operations can be easily constructed in terms of the removing
actions. We show that in general case the removing actions of non-empty dequeue operations can be used to con-
struct such linearization.

For simplicity, we only consider the executions containing two dequeue operations where their removing ac-
tions cannot be used to construct such linearization. Two basic example executions are shown in Fig. 1 and Fig.
2.

Fig. 1. dequeue(x) begins to execute before the removing action of dequeue(y)

In these figures, the black circles of the dequeue operations stand for the logical or physical remov-
ing actions; denotes the enqueue operation with an input parameter ;

 denotes the dequeue operation with a return value .
In Fig. 1, begins to execute before the removing action of . The only linearization of

the execution is . The linearization of the two dequeue op-
erations constructed in terms of the two removing actions is . Under the linearization
of the two dequeue operations, the first condition of Theorem 1 is not satisfied. Thus, the two removing actions
cannot be used to construct linearization of dequeue operations.

If there is no , then the dequeue operation of the thread T4 will remove the value inserted by
, to make the execution linearizable. Thus, the actions before the re-

moving action affect the execution of the dequeue operation of the thread T4, and prevent it observing the value
inserted by . Such dequeue methods are uncommon. Generally, for a lock-free concurrent queue,

97

Journal of Computers Vol. 35 No. 5, October 2024

except for the logical and physical removing actions, the actions do not prevent the values of the queue from be-
ing removed by other dequeue operations. For most of concurrent queues we have verified, the actions before the
removing action of a dequeue operation either read the shared state or access (read or write) the local state, and
do not affect the executions of other dequeue operations.

In Fig. 2, removes the value before begins to execute. If there is no
, then also removes the value . In this case, the execution of the three operations is not lineariz-
able. Thus, such dequeue algorithms are basically nonexistent.

Fig. 2. dequeue(x) begins to execute after the removing action of dequeue(y)

5 Examples

We illustrate our technique on the LCR queue and the TS queue. Proving linearizability of the two queues are
challenging because their enqueue methods do not have fixed linearization points. The linearization points of the
two enqueue methods depend on future executions of dequeue operations.

5.1 Verifying the LCR Queue

The LCR queue [4] shown in Fig. 3 is represented as an infinite size array, item, and two markers, and ,
pointing to the head and end of the interval of the array that may contain values, respectively. The queue reserves
two special values and that are distinct from any element enqueued by the enqueue operations. Each cell

 is initialized to the reserved value .
An enqueue operation first obtains a cell index by performing a Fetch-and-Add (FAA) atomic instruction

(line L7) on , which returns the value of and changes value to . Then it updates the val-
ue of to by the Swap atomic instruction (line L8), which returns the value of and changes

 value to . If the Swap instruction returns , the enqueue operation returns ; otherwise (this means
that the Swap instruction returns), the enqueue operation tries again.

Fig. 3. the LCR queue

98

Proving Linearizability of Concurrent Queues

A dequeue operation first obtains a cell index by performing a FAA atomic instruction on . Then it
updates the value of to by the Swap instruction. If the Swap instruction returns a value , then
the dequeue operation completes and returns ; otherwise (this means that the Swap instruction returns), (1) if

, the dequeue operation returns empty; (2) otherwise, the dequeue operation tries again.
If an enqueue operation deposits a value into the cell which does not contain (this means that the cell con-

tains , and has been visited by some dequeue operation), the value stored in the cell will not be dequeued by
any dequeue operation. Thus, an enqueue operation deposits only one value which may be dequeued. Since a cell
is updated by no more than one dequeue operation, the value in a cell is dequeued at most once. Thus, for a com-
plete history of the LCR queue, there is a safe mapping from to and .

Let denote the last FAA instruction of the enqueue/dequeue operation . Let
denote the happened-before order of atomic actions in an execution. For the enqueue/dequeue operation
/ , let the superscript denote the return value of . Obviously, there are the following
properties:

For two enqueue operations and in a history , if , then ; for two dequeue
operations and in a history , if , then ; if , then .

The last FAA action of a dequeue operation is a logical removing action. After the last
FAA action of a non-empty dequeue operation is executed, is logically removed, i.e., other dequeue
operations cannot logically or physically remove again.

Theorem 2. Every complete history of the LCR queue is linearizable with respect to the standard sequential
queue specification.

Proof. Assume is the linearization of the dequeue operations constructed in terms of
their logical removing actions. Based on the linearization and the safe mapping , we show that the LCR
queue satisfies the two conditions of Theorem 1.

1. . if , let the set . then
 and .

Proof. By the removing actions of dequeue operations, we get . By , we get the return
value of the last FAA instruction of is . Assume the return value of the last FAA instruction of

 is . Consider the following two cases: If , then
. By , we get . If ,
then . By , we get .

By , we can get . Let denote the last Swap in-
struction of . By , we can get . Thus,

.
2. . If , let

, t h e n (1) ; (2)
.

Proof. Since , is true at the time point while the last statement if
() of is executed. Assume . Since at the above time point,
, . Since and , . Thus, . Since all cells from to

 have been updated by dequeue operations before , .
A s s u m e , w e c a n g e t . I f

, t h e n a t t h e t i m e p o i n t w h i l e t h e l a s t s t a t e m e n t i f (
) of is executed. This contradicts the fact: is true at the above time point. Thus,

. S i n c e ,

. Thus .

99

Journal of Computers Vol. 35 No. 5, October 2024

5.2 Verifying the Time-Stamped Queue

Fig. 4 shows the pseudo code for the time-stamped (TS) queue [5]. We use operator for timestamp compar-
ison. For two timestamps and , we say that is bigger than , if ; and are incomparable, if

 and . For two operations and , if the timestamp generated by the oper-
ation is bigger than the one generated by the operation . Let denote the maximal value of timestamps.
There are a number of implementations of the time stamping algorithm. All these implementations guarantee that
(1) in a sequential execution of two calls to the algorithm, the latter returns a bigger timestamp than the former
and (2) a concurrent and overlapping execution of two calls to the algorithm generates two incomparable time-
stamps.

This queue maintains an array of singly-linked lists (i.e., instances of), one for each thread.
Each node of the list contains a data value (field), a timestamp (field), a next pointer (field

). Each list contains a pointer which points to the end of the list, a pointer which points to the
first node (a sentinel node) of the list. Initially both the and pointers point to the sentinel node indi-
cating that the list is empty. The pointer of a list is annotated with an ABA-counter to avoid the ABA-
problem [12]. The methods of the list are as follows.

1.	 insert(v) - inserts a node with a value v and a timestamp , to the end of the list and returns a reference to
the new node.

2.	 getOldest - returns a reference to the node with the oldest timestamp, or if the list is empty, together
with the top pointer of the list.

3.	 remove(node) - tries to remove the given node from the list. Returns and the value of the node if it
succeeds, or returns and otherwise.

These methods of are linearizable, and can be viewed as atomic actions. The Enqueue method first
inserts an element into its associated list (line E3), then generates a timestamp (line E4) and sets the timestamp
field of the new node to the new timestamp (line E5).

The dequeue method first generates a timestamp (line D4), attempts to remove an element by calling
the method tryRem. The tryRem method traverses every list, searching for a node with a minimal timestamp to
remove (line T7-T20). Note that the search starts from a random list, to make different threads more likely to pick
different elements for removal and reduce data contention. If the timestamp of the candidate node

 is bigger than the timestamp (line T29), the candidate is invalid, the tryRem method returns
 (line T30), then the dequeue method restarts. If the candidate node is valid, the tryRem meth-

od tries to remove it (line T31).
During the traversing of the tryRem method, if it finds an empty list, then the top pointer of the empty list is

recorded in the array (line T10-T13). After the traversing, if no candidate node for removal is found
(line T22), then the tryRem method traverses all lists again to check whether their top pointers have changed
(line T23-T26). If not, the tryRem method returns empty (line T27), and then the dequeue method returns empty.
Otherwise, the tryRem method returns false (line T25), and then the dequeue method restarts. If all top pointers
have not changed, all lists must have been empty between the first (line T7) and second (line T23) traversal (be-
cause the top pointers are annotated with ABA-counters).

Theorem 3 states that the TS queue is linearizable, and the following lemma is used in the proof of Theorem
3.

Lemma 2. For a non-empty dequeue operation, , let be the set of the nodes which are still in the lists
while the final removing action T31 of is executed; let be the set of the enqueue operations which insert
the nodes of . is minimal w.r.t. the happened-before order in the set .

Proof. The final candidate node of is inserted by . During the final traversing of , there
are two kinds of lists: the empty lists---are empty when visits them, and the non-empty lists---are not empty
when visits them.

1. For a non-empty list, if the timestamp of the oldest node of the list is not when visits it, then the en-
queue operation inserting the oldest node does not precede .

Proof. The timestamp of the final candidate node of is not bigger than the timestamp of the oldest node of
the non-empty list (by T15). Thus, the enqueue operation inserting the oldest node does not precede .

100

Proving Linearizability of Concurrent Queues

2. For a non-empty list, if the timestamp of the oldest node of the list is when visits it, then the enqueue
operation inserting the oldest node does not precede .

Proof. Let be the enqueue operation inserting the oldest node. does not complete the action E5
(sets the timestamp field of the oldest node) when visits it. Thus, the action D4 (generating timestamp) of

 precedes the action E5 of . Since the timestamp of is not bigger than the timestamp of
 (by T29), the action D4 of does not precede the action E4 (generating timestamp) of

. Thus, the action E5 of does not precede the action E4 of . Thus, does not
precede .

3. For the empty lists, if some nodes are inserted into the empty lists after visits them, then the enqueue
operations inserting the nodes do not precede .

Proof. Assume that an enqueue operation inserts a node into an empty list after visits the empty list.
When visits the empty list, does not complete its inserting action. The timestamp of is gener-
ated by E4 after the inserting action E3. Thus, the timestamp of is bigger than the one of . By the state-
ment T29, the timestamp of is not bigger than the one of . Thus, the timestamp of
is not bigger than the one of . Thus, the enqueue operation does not precede .

4. Q.E.D.
Proof. By 1 and 2, for any non-empty list, the enqueue operation inserting the oldest node does not precede

. Thus, the enqueue operations inserting other nodes do not also precede . By 3, for any
empty list, the enqueue operations inserting the nodes into the empty list do not precede .

Fig. 4. The TS queue

An enqueue operation always inserts a node into a list; a dequeue method either removes a node from a list
and returns the value of the node or returns empty; a node is removed at most once. Thus, for a complete history

 of the TS queue, there is a safe mapping from to and .

101

Journal of Computers Vol. 35 No. 5, October 2024

Theorem 3. Every complete history of the TS queue is linearizable with respect to the standard sequential
queue specification.

Proof. For a non-empty dequeue operation, we choose the successful removing node action of the tryRem
method (T31) to construct the linearization of dequeue operations; for an empty dequeue operation, we choose T22
(at the time point, all lists are empty). Assume is a linearization of the dequeue operations
constructed in terms of these atomic actions. Based on the linearization and the safe mapping , we prove
that the TS queue satisfies the two conditions of Theorem 1.

1. . if , let the set , then
 and .

Proof. Obviously, completes its inserting action E3 before the removing action T31 of .
If does not complete its inserting action before the removing action of , then
. If completes its inserting action before the removing action of , then the node inserted by is not
removed before the removing action of (by). By Lemma 2, . Since the
inserting node action of precedes the removing node action of , and the removing node action
of precedes the removing node action of , .

2. . If , let
, t h e n (1) ; (2)

.
Proof. Since returns , all lists must have been empty at the time point when the statement T22 of

 is executed. Thus, for all enqueue operations which precede , the values inserted by them are removed
by the previous dequeue operations (i.e.,).

At the above time point, any enqueue operation has not completed the inserting action (E3), any
previous dequeue operation , has completed the removing action (T31). Thus, .

6 Related Work

There has been a great deal of work on linearizability verification [13-27]. Mainly, there are four kinds of ver-
ification techniques: refinement-based techniques, simulation-based techniques, reduction-based techniques,
program-logic-based techniques. An interested reader may refer to the survey article [13]. However, proving lin-
earizability of sophisticated concurrent data structures is still a challenging task.

Much work on proving linearizability is based on different kinds of simulation proofs [17-20]. As we ex-
plained in Section 1, forward simulation alone is not sufficient in general to verify linearizability. However,
Schellhorn et al. prove that backward simulation alone is always sufficient. However, backward simulation
proofs are difficult to understand intuitively and require considerable expertise.

Bouajjani et al. propose a forward simulation technique for proving linearizability [17]. They have successful-
ly applied the method to prove the HW queue. In fact, for the HW queue, there does not exist a forward simula-
tion to the standard sequential queue. They need to construct a deterministic atomic reference implementation (as
an intermediate specification) for the concurrent queue, and the linearizability proof is reduced to showing that
the HW queue is forward-simulated by the intermediate specification.

Schellhorn et al. propose a backward simulation technique for proving linearizability [20]. Their proof tech-
nique can deal with concurrent data structures where the linearization points are not fixed, but the proofs are con-
ceptually more complex and less amenable to automation.

One related approach to ours is that of Henzinger et al. [10] (called Aspect-oriented proof technique), which
reduces the task of proving linearizability of concurrent queues to establishing four basic properties, each of
which can be proved independently. For the non-empty dequeue operations, their proof technique needs to verify
the following key property: if for two non-overlapping enqueue operations and , precedes
, then the value inserted by cannot be removed earlier than the one inserted by (i.e., cannot
precede where removes the value inserted by). For the empty dequeue operations,
they propose a primitive verification condition, which requires that there exists a subset of enqueue operations
containing the enqueue operations which precede the empty dequeue operation such that the empty dequeue

102

Proving Linearizability of Concurrent Queues

operation does not precede any of their matching dequeue operations and an enqueue operation which precedes
any of their matching dequeues operation also belongs to the subset. In comparison with the Aspect-Oriented
proof technique, our verification conditions make use of the removing actions of dequeue operations, intuitively
characterize the “FIFO” semantics of concurrent queues and can be transformed into the following state-based
invariant: when the removing action of a dequeue operation logically or physically removes a value, the value is
the oldest value in the current queue.

Khyzha et al. propose a verification technique based on partial orders [14] that is related to our work. The key
idea of their technique is to incrementally construct an abstract history—a partially ordered history of operations;
the linearizability proof is reduced to establish a simulation between its execution and a growing abstract history.
They formalize the technique as a program logic based on rely-guarantee reasoning, have applied it to verify the
HW queue, the TS queue and the optimistic set [27]. Their proof technique is generic and can handle concurrent
data structures with non-fixed linearization points. However, the proof technique relies on program logic and
needs to construct a partially ordered history.

7 Conclusion

We present a simple and complete proof technique for verifying linearizability of concurrent queues. Our proof
technique reduces the problem of proving linearizability of concurrent queues to establishing a set of conditions
based on the happened-before orders of operations. The verification conditions can be easily verified, design-
ers can easily and quickly learn to use the proof technique. We have successfully applied the proof technique
to several concurrent queues: the TS queue and the LCR queue, etc. However, our proof technique is limited to
concurrent data queues. We believe that our proof technique can be extended to prove the concurrent data struc-
tures which have the ordering requirements when their elements are removed, such as priority queues. We plan to
pursue this direction in future work.

8 Acknowledgement

This work is supported by National Natural Science Foundation of China [No. 62341204] and Science and
Technology Research Project of Jiangxi Province Educational Department [No. GJJ2203609].

References

[1]	 M.P. Herlihy, J.M. Wing, Linearizability: A correctness condition for concurrent objects, ACM Transactions on
Programming Languages and Systems 12(3)(1990) 463–492.

[2]	 M.M. Michael, M.L. Scott, Simple, fast, and practical non-blocking and blocking concurrent queue algorithms, in:
Proc. 1996 the fifteenth annual ACM symposium on Principles of distributed computing, 1996.

[3]	 M. Hoffman, O. Shalev, N. Shavit, The baskets queue, in: Proc. 2007 International Conference on Principles of
Distributed Systems, 2007.

[4]	 A. Morrison, Y. Afek, Fast concurrent queues for x86 processors, in: Proc. 2013 Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming, 2013.

[5]	 A. Haas, Fast concurrent data structures through timestamping, [dissertation] Salzburg, Austria: University of Salzburg,
2015.

[6]	 E. Ladan-Mozes, N. Shavit, An optimistic approach to lock-free fifo queues, in: Proc. 2004 International Symposium on
Distributed Computing, 2004.

[7]	 M. Herlihy, N. Shavit, V. Luchangco, M. Spear, The art of multiprocessor programming, Newnes, Burlington, 2020.
[8]	 H. Liang, X. Feng, Modular verification of linearizability with non-fixed linearization points, in: Proc. 2013 Proceedings

of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2013.
[9]	 T.L. Wen, L. Song, Z. You, Proving linearizability using reduction, The Computer Journal 62(9)(2019) 1342–1364.
[10]	 T.A. Henzinger, A. Sezgin, V. Vafeiadis, Aspect-oriented linearizability proofs, in: Proc. 2013 International Conference

on Concurrency Theory, 2013.
[11]	 L. Lamport, How to write a 21st century proof, Journal of Fixed Point Theory and Applications 11(1)(2012) 43–63.
[12]	 D. Dechev, The aba problem in multicore data structures with collaborating operations, in: Proc. 2011 7th International

Conference on Collaborative Computing, 2011.

103

Journal of Computers Vol. 35 No. 5, October 2024

[13]	 B. Dongol, J. Derrick, Verifying linearisability: A comparative survey, ACM Computing Surveys 48(2)(2015) 1–43.
[14]	 A. Khyzha, M. Dodds, A. Gotsman, M. Parkinson, Proving linearizability using partial orders, in: Proc. 2017 European

Symposium on Programming, 2017.
[15]	 V. Singh, I. Neamtiu, R. Gupta, Proving concurrent data structures linearizable, in: Proc. 2016 IEEE 27th International

Symposium on Software Reliability Engineering, 2016.
[16]	 S. Krishna, N. Patel, D. Shasha, T. Wies, Verifying concurrent search structure templates, in: Proc. 2020 Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 2020.
[17]	 A. Bouajjani, M. Emmi, C. Enea, S.O. Mutluergil, Proving linearizability using forward simulations, in: Proc. 2017

International Conference on Computer Aided Verification, 2017.
[18]	 P. Jayanti, S. Jayanti, U. Yavuz, L. Hernandez, A Universal, Sound, and Complete Forward Reasoning Technique for

Machine-Verified Proofs of Linearizability, in: Proc. 2024 Proceedings of the ACM on Programming Languages, 2024.
[19]	 Q. Jia, Y. Lv, P. Wu, B. Zhan, J. Hao, H. Ye, C. Wang, Verilin: A linearizability checker for large-scale concurrent ob-

jects, in: Proc. 2023 International Symposium on Theoretical Aspects of Software Engineering, 2023.
[20]	 G. Schellhorn, H. Wehrheim, J. Derrick, How to prove algorithms linearizable, in: Proc. 2012 Computer Aided

Verification: 24th International Conference, 2012.
[21]	 S.F. Vindum, D. Frumin, L. Birkedal, Mechanized verification of a fine-grained concurrent queue from meta’s folly

library, in: Proc. 2022 Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and
Proofs, 2022.

[22]	 Y.M. Feldman, A. Khyzha, C. Enea, A. Morrison, A. Nanevski, N. Rinetzky, S. Shoham, Proving highly-concurrent tra-
versals correct, in: Proceedings of the ACM on Programming Languages 4 (OOPSLA), 2020.

[23]	 B.K. Ozkan, R. Majumdar, F. Niksic, Checking linearizability using hitting families, in: Proc. 2019 Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming, 2019.

[24]	 C. Wang, C. Enea, S.O. Mutluergil, G. Petri, Replication-aware linearizability, in: Proc. 2019 Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019.

[25]	 G. Sela, E. Petrank, Concurrent size, in: Proc. 2022 Proceedings of the ACM on Programming Languages, 2022.
[26]	 G. Smith, Model checking simulation rules for linearizability, in: Proc. 2016 International Conference on Software

Engineering and Formal Methods, 2016.
[27]	 P.W. O’Hearn, N. Rinetzky, M.T. Vechev, E. Yahav, G. Yorsh, Verifying linearizability with hindsight, in: Proc. 2010

Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, 2010.

Appendix A: Algorithm 1

By using Algorithm 1, can be inserted into a proper position such that the new sequence preserves the partial
order. The algorithm is also used in the proof of Theorem 1.

