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Abstract. Unmanned aerial vehicles (UAVs) are increasingly being deployed in wireless communication 
systems to assist with traffic offloading services because of their high flexibility and mobility. In traditional 
cellular networks, communication performance often degrades at the cell edges during high-demand periods 
when base stations are overloaded. So UAVs can serve as aerial base stations to enhance communication 
performance in such hotspots. However, there is a challenge of limited energy capacity and insufficient com-
puting capabilities. This paper focuses on maximizing the energy efficiency of aerial base stations (ABS) by 
optimizing the number of UAVs, the division of users and the allocation of bandwidth. We explore two UAV 
deployment strategies: multi-UAV hovering and multi-UAV cruising. Our simulation results reveal that the 
cruise deployment strategy nearly doubles the energy efficiency compared to the hovering strategy, provided 
that the number and flight speed of the UAVs are appropriately managed. This result provides an effective 
solution for the energy efficiency optimization of multi-UAV in communications hotspots.

Keywords: unmanned aerial vehicle, cellular offloading, energy efficiency, multi-UAV deployment strategy, 
smart grid

1   Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have rapidly gained popularity in recent years 
due to their highly controllable mobility and rapid deployment characteristics [1]. Due to the continuous reduc-
tion of manufacturing costs and the miniaturization of communication equipment, it has become more feasible to 
use UAVs as aerial base stations (ABS) to assist ground wireless communications [2]. UAV-based wireless com-
munication systems offer new advantages compared to traditional wireless communication systems. For instance, 
UAVs typically have line-of-sight (LoS) links with ground terminals and exhibit high mobility and on-demand 
deployment flexibility, resulting in superior link quality for such systems [3]. These advantages make UAV-
assisted communication capable of supporting the growing demand for highly dynamic wireless data traffic in 
future 5G and beyond cellular systems, especially in smart grid systems for cellular data offloading [4].

However, the energy efficiency of the UAV is a huge challenge due to its limited battery capacity. Therefore, 
how to reduce the power consumption of the UAV while guaranteeing the required Quality-of-Service (QoS) 
is of great significance [5]. In [6], an energy consumption model for rotary-wing UAVs, with closed-form ex-
pression as a function of the initial velocity, acceleration and time duration was derived. The propulsion power 
consumption of a rotary-wing UAV is convex concerning its speed. This paper jointly optimized the allocation 
of time and UAV trajectories to minimize the power consumption of the UAV. In [7], the authors proposed mod-
el-free deep reinforcement learning (DRL)-based collaborative computation offloading and resource allocation 
(CCORA-DRL) scheme in an aerial to ground (A2G) network in order to minimize task execution delay and 
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energy consumption. The UAV-assisted Mobile Edge Computing (MEC) was studied in [8]. It aims to maximize 
the energy efficiency of a single UAV through the joint optimization of the UAV trajectory, user transmit power 
and computation load allocation. In [9], the authors studied the energy-efficient of the UAV based wireless sensor 
network. The power allocation and UAV scheduling schemes are jointly optimized to minimize energy consump-
tion in this paper. In order to study the power consumption of UAVs, the authors first propose a heuristic energy 
model and provide experimental validation based on the measurement results for circular level flight in [10].

The above work primarily focused on the energy efficiency optimization of a single UAV wireless communi-
cation system. However, the continuous service capability of a single UAV is relatively limited due to constraints 
in energy and coverage. Therefore, multi-UAV communication solutions have been considered in some studies. A 
multi-UAV enabled Internet of Things (IoT) is studied in [11], where a UAV serves cell-edge users with a circular 
trajectory. By jointly considering the average data rate, the total energy consumption, and the fairness of cover-
age for the terminals, the trajectory design of UAV is optimized. In [12], the authors utilized Deep Reinforcement 
Learning (DRL) to address an energy efficiency optimization problem in multi-UAV communication, aiming to 
achieve a fair solution in terms of UAV energy consumption and coverage range. Meanwhile, in [13], the authors 
jointly optimized the trajectories of all UAVs considering the co-channel interference between different UAVs. 
To achieve maximum energy efficiency, an optimal trade-off between throughput and energy consumption needs 
to be found. To overcome the high complexity of centralized algorithms, [14] introduced a multi-agent distrib-
uted Q-learning approach to individually control the deployment and transmit power of multiple UAV-BSs, with 
the aim of maximizing energy efficiency while enhancing outage performance.

In the UAV-assisted smart grids scenario, the authors in [15] have modeled the UAV’s resource allocation as a 
Markov process, based on the UAV flight and hovering communication protocol. [16] introduced an optimization 
scheme that integrates multi-UAV trajectories, transmit power, and user scheduling for UAVs. Additionally, a 
one-to-one communication scheduling protocol was designed for UAVs and cell-edge users to minimize co-chan-
nel interference. In the literature reviewed, most studies focus solely on the hovering strategy for UAVs and over-
look the potential impact of the cruising strategy on optimizing energy consumption. This oversight is significant 
because a UAV moving at a moderate speed consumes less energy than one hovering at a constant altitude.

Building on the motivations outlined above, this paper addresses the optimization of energy efficiency for 
multiple UAVs operating at the edge of a single cell. Therefore, we established energy consumption optimization 
models for these two UAV deployment strategies to explore the impact of different strategies on UAV energy 
consumption optimization. We consider the following scenario: a ground base station (GBS) is located in the 
center of the smart grids cell, and multiple UAVs are deployed at the edge of the cell to offload the edge user traf-
fic. Overall, the main contributions of this paper can be summarized as follows.

1) We proposed two deployment strategies to optimize energy efficiency, the multi-UAV hovering deployment 
strategy and the multi-UAV cruise deployment strategy. In the hovering deployment strategy, multiple UAVs are 
deployed in the edge area, and GBS serve users outside the UAV coverage area. In the cruise deployment strat-
egy, the edge area outside the GBS’s coverage radius is divided into multiple areas of the same size. The UAV 
coverage area is designed to avoid the unbalanced user service time under the circular area.

2) We establish models under two strategies and maximize energy efficiency by optimizing the number of 
UAVs, bandwidth allocation, and user division. 

3) Moreover, through bisection search and block gradient descent, these two problem’s optimal solutions are 
obtained, respectively. 

4) The simulation results show that the highest energy efficiency can be obtained by deploying the appropriate 
number of UAVs under the cruise deployment strategy.

The remainder of this paper is organized as follows. The system model is given in Section 2. The multi-
UAV hovering deployment strategy and multi-UAV cruise deployment strategy are investigated in Section 3 and 
Section 4. Numerical results are presented in Section 5 and Section 6 concludes the paper.

2   System Model

As shown in Fig. 1 and Fig. 2, multiple UAVs are deployed to offload traffic for cell-edge users. The downlink 
communication link between the GBS/UAV and the users is considered. The users within the cell are randomly 
and uniformly distributed with density λ.
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In the hovering deployment strategy, depicted in Fig. 1, m homogeneous hovering UAVs are deployed at the 
cell’s edge with a coverage radius of rABS = rhov and height HABS = Hhov . A ground base station (GBS) is located in 
the circular cell’s center with the coverage radius rcell and fixed altitude HGBS . The UAV coverage area inscribes 
the edge of the cell, serving users within the coverage radius of rhov . The remaining users are served by the GBS. 
The coverage areas of GBS and the UAVs do not overlap. Thus the area covered by a UAV is 2

hov hovS rπ= , and 

the area covered by the GBS is 2
cell hovr mSπ − .

As shown in Fig. 2, in the cruise deployment strategy, users within the area with radius rGBS are served by the 
GBS, while the edge area is divided into m segments at equal intervals. A cruise flight UAV with speed V is de-
ployed in each segment, following a circular trajectory with a radius of ( ) / 2mov cell GBSr r r= +  and a flight period 
of T. To balance the duration of UAV service for different users, a sector with a central angle of ϕ is selected as 
the coverage area of the UAV, instead of the circular coverage area. The horizontal distance between any user 

and the UAV in the sector is less than 2 2 2 cos( / 2)max mov cell mov celld r r r r φ= + − . This paper investigates energy effi-

ciency under two strategies: multi-hover UAV and multi-cruise UAV deployment. The symbols in our model are 
shown in Table 1.
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Table 1. List of main notations

Notations Description
HGBS The height of the UAVs
dGBS Horizontal distance between the user and the GBS
rABS UAV coverage radius
rcell Cell coverage radius
rGBS GBS service coverage radius
ρ Bandwidth allocation factor

Rth Instantaneous rate threshold

To avoid interference between UAVs and GBS, we divide the bandwidth into two parts. It is assumed that the 
total bandwidth available is B, which is divided into two portions, i.e., ρB, 0 ≤ ρ ≤ 1 and (1−ρ)B, used for the 
UAV and GBS, respectively. The bandwidth allocated to the UAV is equally shared among the users associated 
with the UAV. Similarly, the GBS also adopts the equal bandwidth allocation scheme.

For GBS-user communication, the channel between the GBS and the user is a traditional fading channel mod-
el, including large-scale fading and small-scale path loss. Thus, the channel power gain from the GBS to the us-
ers is modeled as

2 2 /2( )GBS GBS

g
H d α

βξ
=

+
,                                                                 (1)

where β = (4π fc /c)−2 denotes the channel power gain at the reference distance 1 m, ξ denotes the independent and 
identically distributed small-scale Rayleigh fading with unit mean ξ ~ Exp(1), and dGBS represents the horizontal 
distance between the user and the GBS, and α denotes the path loss exponent.

According to the analysis in [14], we define the user’s average signal noise ratio (SNR) as γ and the signal 
transmission power of the GBS as PGBS . The signal transmission power of the GBS is equally allocated to the us-
ers, so the average SNR of the user can be obtained as

2 2 2 /2(1 ) ( )
GBS GBS

GBS GBS

P G
B H d α

β
γ

σ ρ
=

− + ,                                              (2)

where the receiver noise is assumed to be additive white Gaussian noise with power spectrum density σ2 and GGBS 
is the fixed antenna gain with an omnidirectional antenna.

For UAV-user communication, it is assumed that each UAV is equipped with a directional antenna, and the 
angle of half of the antenna beam is θ, where θ = arctan(rABS/HABS). Therefore, the antenna gain of UAV can be 
approximately G0/θ

2. The channel between UAV and ground users consists of two parts, the LoS link factor, and 
non-line-of-sight (NLoS) link factor. The probability of the LoS link between UAV and users depends on the 
maximum coverage distance rABS , rABS = rhov in hovering deployment strategy, and rABS = rmov in cruise deployment 
strategy. As the coverage radius of UAV is rABS , the probability of LoS link between UAV and users is

1
1 exp( arctan( / ) )LoS

ABS ABS

P
a b H r a

=
+ − −

,                                                (3)

where a and b are constant and only related to the environment and frequency, arctan(HABS/rABS) denotes the UAV 
service user’s elevation angle, and HABS denotes UAV height. Thus, with horizontal distance rABS between the us-
ers and its serving UAV, the path loss expression is

4
( ) ( ) 20 ( )c

ABS LoS
df

L r LoS NLoS P log
c
π

η η= − + ,                                            (4)

where 2 2
ABS ABSd r H= +  denotes the distance between the UAVs and the users, c denotes the speed of light, ηLoS 
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and ηNLoS are the excessive pathloss corresponding to the LoS and NLoS links depending on the environment 
and frequency.

In the next section, we will present the problem formulation and solutions to maximize the energy efficiency 
for the hover deployment strategy and cruise deployment strategy, respectively.

3   Hovering Deployment Strategy

3.1   Problem Formulation

The minimum instantaneous rate of the GBS-user links is 

, 2 (1 )GBS GBS kR B log γ ′= + ,                                                               (5)

where γ' = γξ and 2
, (1 ) / ( )GBS k cell hovB B r mSρ λ π= − − .

Due to the GBS-user link’s small-scale fading, an outage event occurs when the instantaneous rate is smaller 
than a given throughput Rth . The outage probability of the worst GBS-user link is given by [17] as

( )
( )( )
( )( )

,

,

'
, , 2

/

/

log (1 )
2 1 /

1 exp 2 1 /

th GBS k

th GBS k

out GBS r GBS k th
R B

r

R B

P P B R
P

γ
ξ γ

γ

= + <

= < −

= − − −
.                                                    (6)

It can be verified that Pout,GBS is an increasing function of Rth , ρ, and rGBS .
In order to avoid interference between multiple UAVs, the UAV coverage areas should not overlap. Therefore, 

the coverage radius of UAV satisfies rhov ≤ (rcell − rhov)sin(π/N). Ignoring the tangent effect,

sin

1 sin

cell
upper

hov hov

r
Nr r

N

π

π

 
 

∆ ≤ = +  
 

.                                                              (7)

Combined with the system model derivation in the previous chapter, the average rate of users served by the 
UAVs is given by 

( )
0

2 0.12 2
log 1

10 ABS

hov
hov L r

hov

P GBR
S B
ρ
λ σ ρ θ

 
= +  

 
                                                  (8)

The total power consumption of hovering UAVs consists of two parts, i.e., transmission power consumption 
and propulsion power consumption. The transmission power consumption is far less than propulsion power con-
sumption and thus is neglected. The UAV propulsion power consumption is given by [18]

1 2

3hov
c cP

mg

+
= ,                                                                       (9)

where c1 and c2 are the inherent attributes of the UAV.
By optimizing the number of hovering UAVs, the coverage radius of UAVs, and the bandwidth allocation 

between UAVs and GBS, UAV’s energy efficiency is maximized, and the outage of GBS is guaranteed to be less 
than the given threshold Pth . Therefore, the considered problem can be formulated as P1.
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where C1 denotes the prescribed outage probability threshold, C2 indicates that the user’s average rate cannot be 
smaller than the expected throughput, C3 are the feasible and boundary constraints of the involved variables.

3.2   Proposed Algorithm

The UAV’s propulsion power consumption is only related to UAV attributes and does not correlate with the pa-
rameters in the objective function. Therefore, the simplified problem P1 can be obtained as P2 
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.                                                                (11)

Assume that Rth and m are given, it can be verified that Rhov and Pout,GBS are increasing function of ρ and de-
creasing function of rhov . Therefore, UAV’s bandwidth allocation ρ and the coverage radius rhov should be care-
fully designed to achieve the optimal trade-off between the GBS-user links and the UAV-user links. However, 
problem P2 is challenging to solve due to the non-convex constraints C1 and C2. By exploiting the inherent 
characteristics of Pout,GBS and Rhov , problem P2 can be solved as follows.

Given the number of UAVs m, for each value of Rth , problem P2 can be transformed into P3. In order to verify 
whether the given Rth can be reached, we next solve problem P3

,{ , }

,

3 : min

2 :
3 : 0 1

:

4 :

1

0

hov
out GBSr

out GBS th

th hov

upper
hov hov

P P
P P

C R R
C
C

C

r r

ρ

ρ

≤
≤

≤ ≤
≤ ≤

.                                                                (12)

If the optimal Pout,GBS of problem P3 is no larger than ,out GBSP , the corresponding Rth is a feasible solution to 
problem P2. Therefore, bisection search can be adopted to maximize the minimum throughput Rth iteratively. 
Problem P3 is still difficult to solved due to the non-convex objective function Pout,GBS , and the non-convex con-
straint C2. Therefore, the standard convex optimization techniques cannot be directly used to solve problem P3.

In order to minimize Pout,GBS , it is best to choose the minimum value of ρ that satisfies Rth ≤ Rhov . A bisection 
search for ρ ranging from 0 to 1 can be performed to check the feasibility of ρ. And then a one-dimensional 
search for rABS ranging from 0 to upper

ABSr  can be performed to get the feasible rABS . Furthermore, the values of ρopt 

and opt
GBSr  can be obtained iteratively. If the optimal Pout,GBS of problem P3 is no larger than ,out GBSP , the Rth is a fea-

sible solution. Finally, the optimal UAVs number mopt can be obtained via a one-dimensional search.

4   Cruise Deployment Strategy

4.1   Problem Formulation

In this strategy, the service duration that all users covered by UAVs can obtain is approximately Tk = ϕT/2π. In 
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order for the UAV to cover the users in dmax, it must be guaranteed dmax ≤ Hmov tanθ. Therefore, the maximum 
available antenna gain is Gmov,max = G0(arctan(dmax/Hmov))

−2.
Combined with the analysis in the system model derivation, the minimum instantaneous rate of the GBS-user 

links is

'
, 2log (1 )GBS GBS kR B γ= + ,                                                            (13)

where γ' = γξ , 2
, (1 ) /GBS k GBSB B rρ λπ= − .

Due to the small-scale fading of the GBS-user links, an outage event occurs when the instantaneous rate is 
smaller than a given throughput Rth . The outage probability of the worst GBS-user link is given as

( )
( )( )
( )( )

,

,

'
, , 2

/

/

log (1 )
2 1 /

1 exp 2 1 /

th GBS k

th GBS k

out GBS r GBS k th
R B

r

R B

P P B R
P

γ
ξ γ

γ

= + <

= < −

= − − −
.                                                  (14)

The average rate of all users served by

( ) max

,max
2 0.1 ( )2 22 2

log 1
10

c mov
mov L d

cell GBS

P GBR
Br r

ρ
σ ρ θλπ

 
= + 

−  
.                                       (15)

In the same way as hovering deployment strategy, the transmission power consumption is much smaller than 
the propulsion power consumption of the UAV, so the transmission power consumption of is ignored. Different 
from the hovering deployment strategy, the propulsion power consumption of cruising UAVs is not only related 
to the fixed attributes of the UVA but also depends on the UAV’s speed V. The UAV’s propulsion power con-
sumption is given by [5] as

2
32 0

1 1 22

3 11
2mov

tip

PVVP P f s s V
VU

η
 

= + + +  
 

,                                                (16)

where P1 denotes the blade profile power, P2 is the induced power, Utip denotes the rotor blade’s tip speed, V0 de-
notes the mean rotor induced velocity, f is the fuselage drag ratio, s1 is known as rotor solidity, η indicates the air 
density, and s2 denotes the rotor disc area.

By optimizing the number of cruising UAVs, the coverage radius of GBS, and the bandwidth allocation be-
tween UAVs and GBS, UAV’s energy efficiency is maximized, and the outage of GBS is guaranteed to be small-
er than the given threshold. Therefore, the considered problem can be formulated as P4

( )

{ , , , }
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,                                                           (17)

where constraint C6 indicates that the UAVs must serve all cell-edge users within period T.

4.2   Proposed Algorithm

Due to the objective function and constraints C1 and C2, the problem P4 is a complex non-convex optimization 
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problem. To solve this problem, we divide it into two subproblems and obtain the original problem’s suboptimal 
solution by an iterative algorithm. Assuming that V is known, the propulsion power consumption of UAV can be 
directly calculated, and the objective function is simplified into P5

( )

{ , , }

,
:

1:

 

5 : max

2
3 : 0
4 : 0 1
5 :

GBS
thm r

out GBS th

th mov

GBS cell
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P R
P P

C R R
C r r
C
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C
ρ

ρ
π

≤
≤

≤ ≤
≤ ≤

+ ≤

.                                                           (18)

Pout,GBS is an increasing function of ρ, rGBS and Rth with a maximum Pth . It can be verified that Rth is also an in-
creasing function of ρ, rGBS . For a given V, to maximize the objective function, the values of rGBS and ρ should be 
maximized under the constraint Pout,GBS ≤ Pth . Through bisection search, the maximum values of ρ and rGBS satis-
fying the constraints are obtained in [0,1] and [0, rcell]. Thus, m can be calculated directly. With the values of m, ρ 
and rGBS obtained, the objective function can be expressed as follows, which is defined as problem P6

( )

{ }

max

6 : min
1:
2 :

movV

cell GBS

P P
C V V
C r r mVTπ

≤
+ ≤

.                                                           (19)

It can be verified that this is a linear constraint cubic programming problem so that it can be solved directly by 
the classical convex optimization method. In this paper, the CVX toolbox is adopted to solve it.

Based on the above analysis, we propose an iterative algorithm, which uses the block gradient descent method 
to achieve the overall optimization of bandwidth allocation and UAV trajectory to achieve maximum energy ef-
ficiency. Specifically, in the l−th iteration, we first solved the problem P5 to optimize rGBS and ρ then calculate m. 
Finally, the opt

GBSr , ρopt, and mopt obtained by the above calculation is used to solve the problem P6 to get the value 
of V opt.

5   Results and Discussion

In this section, the numerical simulations are provided to evaluate the performance of our proposed UAV deploy-
ment strategies. We simulate the two deployment strategies proposed in this paper and compared them with the 
hybrid deployment strategy. In the hybrid deployment strategy, an equal number of hovering and cruise UAVs 
are deployed in the cell’s edge, and a cruise UAV is deployed between the two hovering UAVs. Without loss of 
generality, the parameters are set as the following Table 2.

Table 2. System parameters

Parameters Value Parameters Value
Hmov Hhov 100m c1 c2 [18] 1.49

HGBS 20m b 0.28
rcell 1000m φ π/6
B 10MHZ T 60s
c 3×108m/s Pc 2W
α 3 Utip 120

PGBS 15W V0 4.03
σ2 [11] −174dBm f 0.6

GGBS [17] 16dBi s1 [19] 0.05
G0 2.2846 s2 [19] 0.503
a 11.95 η [11] 1.225
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As the Fig. 3 shows, MHS is defined as a multi-hover UAV deployment strategy, MMS indicates a multi-cruis-
ing UAV deployment strategy, and MDS denotes a multi-UAV hybrid deployment strategy. Based on the hov-
ering deployment strategy, one cruise UAV is deployed between every two hovering UAVs, and the number of 
hovering UAVs and cruise UAVs is equal. It can be seen from the figure that the energy efficiency of MMS has 
been higher than the other two deployment strategies, and the energy efficiency of MDS is higher than that of 
MHS. In the MMS deployment mode, when the optimal number of cruise UAVs are deployed, cruise UAVs’ 
power consumption is close to half of the power consumption of hovering UAVs.

Fig. 3. Energy efficiency with different user density

Fig. 4. Energy efficiency with different number of UAVs

Furthermore, in the cruise deployment mode, the GBS only needs to serve users in rGBS , and the channel con-
dition is better because the users are relatively close to the GBS. Besides, it can be seen from the results that 
when the user density is more significant than 500, the energy efficiency of the three strategies is lower than 2. 
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Therefore, the system has a capacity limitation on user density. In summary, adopting the MMS strategy and de-
ploying an appropriate number of UAVs can achieve the best energy efficiency.

In the Fig. 4, the energy efficiency is mainly related to the transmission rate for MHS, since the hovering pow-
er of the UAV is fixed. It can be seen from the figure that when the number of UAVs is 6, MHS has the highest 
energy efficiency. As the number of UAVs goes from 2 to 6, the energy efficiency of the MHS strategy continues 
to increase. This is because as the number of UAVs increases, rABS is decreasing, and the distance between UAV 
service users and UAVs is closer, and the channel conditions are better.

At the same time, the distance between the user and the GBS is relatively short, and has not been significantly 
affected by the constraint threshold. With the number of UAVs ranging from 6 to 10, the energy efficiency of the 
MHS strategy is constantly decreasing. This is because with the decrease of rABS , the coverage of GBS continues 
to increase. In order to meet the threshold of GBS service users, more bandwidth is allocated to GBS, which 
results in a greatly reduced bandwidth for UAV service users. Similar to MHS, MDS and MMS strategies have 
similar trends. The optimal number of MDS is equal to MHS, and the optimal number of MMS is 8, which is 
greater than 6 of the former. When the number of UAVs under the MMS strategy is 8, their flying speed can ap-
proach the speed with the lowest power consumption. When the number is too small, each UAV needs to cover a 
larger range during the cycle, and its flying speed will be greater than the optimal speed.

Fig. 5. Propulsion power with different speed

It can be seen from the Fig. 5 that when the number of UAVs is greater than or equal to 4, the energy efficien-
cy of the MHS strategy is lower than the other two strategies, and when the number of UAVs is less than or equal 
to 3, the result is the opposite. This is because as the number of UAVs continues to increase, the coverage area of 
a single cruise UAV continues to decrease, and its flight speed is gradually approaching the optimal flight speed. 
When the cruise UAV speed is lower than 22m/s, its flight power consumption is lower than that of the hovering 
UAV.

As shown in the Fig. 5, the flight power consumption of a cruise UAV and a hovering UAV at different speeds 
are compared. Since the flying power consumption of hovering UAVs has nothing to do with speed, but only 
related to environmental factors such as air resistance and wind power, the flying power of hovering UAVs is 
constant. In the simulation, we set it to 200 as [18]. The flight power of cruise UAVs is a concave function with 
respect to speed. The flying power of the cruise flying UAV reaches its minimum value at a speed of 10. It can 
be obtained from the simulation results that when the speed of the UAV is between 2.5 and 22, the power con-
sumption of the cruise UAV is less than the hovering UAV. In the rest of the range, the power consumption of the 
cruise UAV is larger than hovering UAV.
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Fig. 6. Optimal ratios under different number of UAV

It can be seen from the Fig. 6 that under the hovering deployment strategy, the bandwidth allocation first in-
creases and then decreases. Because as the number of UAVs increases, although the coverage area of a single 
hovering UAV continues to decrease, the proportion of the total area covered by all hovering UAVs in the entire 
area is increasing. The number of users served by GBS is reduced so that more bandwidth can be allocated to 
UAVs. As the number of UAVs increases, the proportion of the UAV coverage area decreases, and more band-
width is allocated to GBS. Under the cruise deployment strategy, GBS’s coverage continues to increase, and 
bandwidth allocation decreases. Because as the number of UAVs increases, the distance that they can cover at the 
optimal speed is longer, and the UAV’s flight trajectory is closer to the edge of the cell, so the number of users 
covered by the GBS is more extensive, and more bandwidth is allocated to the GBS.

6   Conclusion

This paper proposed a heterogeneous cellular network, where a GBS locates in the center of the cell, and multi-
ple UAVs are deployed at the edge to offload the cell-edge user traffic. We proposed two deployment strategies to 
optimize energy efficiency, the multi-UAV hovering deployment strategy, and the multi-UAV cruise deployment 
strategy. We established models under two strategies and maximized energy efficiency by optimizing the number 
of UAVs, bandwidth allocation, and user division. The simulation results show that the maximum energy effi-
ciency can be achieved by adopting the cruise deployment strategy and deploying the optimal number of UAVs. 
However, this article solves the traditional single-objective optimization problem. In the future, artificial intel-
ligence algorithms can be considered to effectively solve complex non-convex optimization problems through 
continuous interaction with the environment, and guide the agent to obtain the maximum reward.

7   Acknowledgement

This work was funded by the State Grid Corporation of China Science and Technology Project (No. 
SGMDXTOOJSJS2100034).



134

Energy-Efficient Optimization of Multi-UAV Assisted Smart Grids Networks

References

[1] Z. Xiao, L. Zhu, Y. Liu, P. Yi, R. Zhang, X. Xia, A Survey on Millimeter-Wave Beamforming Enabled UAV 
Communications and Networking, IEEE Communications Surveys & Tutorials 24(1)(2022) 557–610.

[2] Y. Hu, C. Tian, F. Zhang, D. Ma, Z. Shi, A Dynamic Cellular Network Framework for Multi-UAV-BS Deployment, 
Wireless Personal Communications 131(2023) 2991–3007. 

[3] C. Zhan and Y. Zeng, Energy-Efficient Data Uploading for Cellular-Connected UAV Systems, IEEE Transactions on 
Wireless Communications 19(11)(2020) 7279–7292.

[4] Z. Ullah, F. Al-Turjman, L. Mostarda, Cognition in UAV-Aided 5G and Beyond Communications: A Survey, IEEE 
Transactions on Cognitive Communications and Networking 6(3)(2020) 872–891. 

[5] Q. Wu, J. Xu, Y. Zeng, D.W.K. Ng, N. Al-Dhahir, R. Schober, A Comprehensive Overview on 5G-and-Beyond 
Networks With UAVs: From Communications to Sensing and Intelligence, IEEE Journal on Selected Areas in 
Communications 39(10)(2021) 2912–2945. 

[6] H. Yan, Y. Chen, S.-H. Yang, New Energy Consumption Model for Rotary-Wing UAV Propulsion, IEEE Wireless 
Communications Letters 10(9)(2021) 2009–2012.

[7] A.M. Seid, G.O. Boateng, S. Anokye, T. Kwantwi, G. Sun, G. Liu, Collaborative Computation Offloading and Resource 
Allocation in Multi-UAV-Assisted IoT Networks: A Deep Reinforcement Learning Approach, IEEE Internet of Things 
Journal 8(15)(2021) 12203–12218. 

[8] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, X. Shen, Energy-Efficient UAV-Assisted Mobile Edge Computing: 
Resource Allocation and Trajectory Optimization, IEEE Transactions on Vehicular Technology 69(3)(2020) 3424–3438. 

[9] F. Zeng, Z. Hu, Z. Xiao, H. Jiang, S. Zhou, W. Liu, D. Liu, Resource Allocation and Trajectory Optimization for QoE 
Provisioning in Energy-Efficient UAV-Enabled Wireless Networks, IEEE Transactions on Vehicular Technology 69(7)
(2020) 7634–7647.

[10] X. Liu, Z. Liu, B. Lai, B. Peng, T.S. Durrani, Fair Energy-Efficient Resource Optimization for Multi-UAV Enabled 
Internet of Things, IEEE Transactions on Vehicular Technology 72(3)(2023) 3962–3972. 

[11] L. Zhang, A. Celik, S. Dang, B. Shihada, Energy-Efficient Trajectory Optimization for UAV-Assisted IoT Networks, 
IEEE Transactions on Mobile Computing 21(12)(2022) 4323–4337. 

[12] C.H. Liu, X. Ma, X. Gao, J. Tang, Distributed Energy-Efficient Multi-UAV Navigation for Long-Term Communication 
Coverage by Deep Reinforcement Learning, IEEE Transactions on Mobile Computing 19(6)(2020) 1274–1285. 

[13] N. Lin, Y. Fan, L. Zhao, X. Li, M. Guizani, GREEN: A Global Energy Efficiency Maximization Strategy for Multi-UAV 
Enabled Communication Systems, IEEE Transactions on Mobile Computing 22(12)(2023) 7104–7120. 

[14] S. Lee, H. Yu, H. Lee, Multiagent Q-Learning-Based Multi-UAV Wireless Networks for Maximizing Energy Efficiency: 
Deployment and Power Control Strategy Design, IEEE Internet of Things Journal 9(9)(2022) 6434–6442. 

[15] T. Lyu, J. An, M. Li, F. Liu, H. Xu, UAV-assisted wireless charging and data processing of power IoT devices, 
Computing 106(2024) 789–819. 

[16] Z. Feng, Z. Na, M. Xiong, C. Ji, Multi-UAV Collaborative Wireless Communication Networks for Single Cell Edge 
Users, Mobile Networks and Applications 27(2022) 1578–1592. 

[17] J. Lyu, Y. Zeng, R. Zhang, UAV-Aided Offloading for Cellular Hotspot, IEEE Transactions on Wireless Communications 
17(6)(2018) 3988–4001.

[18] X. Li, H. Yao, J. Wang, X. Xu, C. Jiang, L. Hanzo, A Near-Optimal UAV-Aided Radio Coverage Strategy for Dense 
Urban Areas, IEEE Transactions on Vehicular Technology 68(9)(2019) 9098–9109. 

[19] Y. Zeng, J. Xu, R. Zhang, Energy Minimization for Wireless Communication With Rotary-Wing UAV, IEEE 
Transactions on Wireless Communications 18(4)(2019) 2329–2345. 


