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Abstract. Predicting ocean surface winds aids in forecasting precise weather conditions and tides for resi-
dential and commercial purposes. A Multi-Modular Semantic Data Analysis (M2SDA) method is proposed to 
address the missing data errors across different accumulation regions to improve the forecast precision. Large 
volumes of data from multiple oceanic regions are gathered by sensors deployed across the ocean bed and 
buoy sense. Artificial intelligence-based analysis was used to identify missing data errors. Considering that 
the time factor is confined, the forecast endurance based on sensing and aggregation time factors is considered 
in the identification process, which is required for preventing breaks in data analysis. The M2SDA’s perfor-
mance is validated using precision, error, analysis time, identification ratio, and analysis rate. Experimental 
results showed that the suggested M2SDA enhances precision, identification, and analysis ratio of 9.16%, 
9.9%, and 8.19%. Error and analysis time are decreased by 8.75% and 10.63%.

Keywords: data analysis, regression learning, semantics verification, wind prediction  

1   Introduction

The task of wind prediction in an algorithm for forecasting is challenging. Severe and damaging wind prediction 
is a very difficult task to forecast. Wind prediction accuracy rate differs due to changes in climate and surface 
[1]. Wind prediction for the ocean surface plays a major role in ensuring users’ safety during the sailing period. 
Ocean wind prediction is based on a certain set of instruments and measurements. Identifying wind direction and 
speed are the two most important tasks to perform in the wind prediction process [2]. Wind speed and direction 
over the ocean surface impact the weather forecasting system. Remote sensing technology is mostly used for 
the wind perdition process on ocean surfaces [3]. Wireless sensors and radars provide appropriate information 
for the prediction process. Both upper and lower-level winds are identified via signals produced by radar scans 
[4]. Numerical weather prediction (NWP) The practice of predicting the wind is most frequently utilized with 
models. NWP first addressed coastal regions and surfaces to collect necessary information regarding winds. Both 
sharp and smooth changes in winds are classified based on a certain set of features and functions. The weather 
prediction method’s performance is improved due to NWP’s increased prediction accuracy rate [5]. 

An examination of data acquired or communicated from sensors and Internet of Things (IoT)-capable de-
vices is known as the analysis of sensor data. This analytical procedure identifies important data, which is then 
provided in a database for additional processing and use [6]. Sensor data analysis is an essential component of 
wind prediction since it identifies the pertinent information required for precise forecasting. Additionally, sensor 
data classification and identification yields crucial information that makes wind prediction easier [7]. The study 
of sensor data for wind prediction uses ML methods and techniques. These methods are used to pinpoint sensor 
data’s specific significance and content, providing pertinent information for additional processing. The efficiency 
and efficacy of the system are increased by utilizing ML approaches, which also greatly increase the wind predic-
tion process’ overall accuracy rate [8, 9]. The sensor data analysis process analyses the quality and feasibility lev-
el of information that is presented in the database. A weather forecasting system gathers the information collected 
during the purpose of data evaluation procedure via a wireless sensor network (WSN). Wireless sensors capture 
exacts data of winds over the ocean surface This lowers the wind forecasting process’ delay rate [10, 11].

Artificial intelligence (AI) technology is a subset of machine learning (ML) techniques that utilize human 
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intelligence to perform a certain task in computers and machines. AI technique improves the effectiveness and ef-
ficiency of an application. AI is widely used for the wind prediction process over the ocean surface [12, 13]. The 
Long Short-Term Memory (LSTM) model is mostly employed in AI-based wind prediction process. LSTM iden-
tifies the important set of data that are presented in the historical wind dataset. LSTM trains the datasets that pro-
vide the necessary set of information for wind prediction [14]. In the wind forecast procedure, an artificial neural 
network (ANN) method is also employed. ANN technique calculates datasets that are presented in the database. 
ANN first identifies the data that is required for the wind prediction process [15, 16]. ANN improves the system’s 
effectiveness and productivity by raising the general rate of accuracy in the wind forecasting procedure. ANN 
improves both performance and also feasibility rate of wind prediction process. A genetic algorithm (GA) is also 
used for over surface wind prediction process. Also introduced Deep Learning (DL) with probabilistic prediction 
for wind power plants speed and direction failure prediction. Using prior weather data as feed could help fore-
casts of power production since it allows the model used for prediction to take into account inaccuracies in fore-
casting the weather [17]. Also, Deep attention convolutional recurrent network [18] offered more precise short-
term WSP. Initially designed to extract hidden representations to effectively capture spatial-temporal knowledge 
among wind speeds observed across the wind farm.

The development of an auto-updated memory module follows, which reconstructs latent representations from 
previous data. The reconstructed latent representations are grouped into K patterns using a K-shape clustering 
technique. The final prediction layer is created to produce the WSP outcome for latent representations that are 
consistently assigned to one of the K patterns out of K. Hence [19] provided a hybridized framework WSF for 
a moment based on meta-learning. The meta-learning and individual predictor components comprise the collec-
tive forecasting system. Three previously trained distinct predictors centered on the multi-output neural network 
featuring backpropagation with many concealed  layers, the LSTM-RNN, and the recurrent gated units, make 
up the separate prediction section built using a multi-feed. One can estimate the direction of the wind value that 
needs to be expected by balancing the combined values of the hybridized units that depend on past wind speed 
data. Multimodal DL [20] to recover the wind speed after the variation of the information provided to get around 
the difficulty of hand-engineered feature integration and successfully do so. The results showed improvement 
in prediction accuracy, with error prediction metrics, and demonstrated that accuracy is closely correlated with 
sample size but unrelated to wind speed. Bidirectional long short-term memory (Bi-LSTM) [21] predicted the 
short-term typhoon wind speed accurately by taking into account both the real-world model and the artificial 
neural network (ANN) model. The bi-LSTM model is optimized using the particle swarm optimization (PSO) 
technique and then employs a variation mode decomposition (VMD) approach for breaking speed downwind. 
The findings demonstrate that the developed model can predict typhoon wind speed and has great tolerance for 
making uncertainty predictions, showing good results for MSE, RMSE, and R2. The approach’s practical ap-
plicability may be impacted by the approach’s computational requirements for scaling up. In [22], the multiple 
sizes pattern adaptive retrieval hybridized method generates wind speed estimations. The suggested approach 
builds six networks with various convolution operator lengths and collects. It exercises the deep autocorrelation 
pattern at various point levels hidden in data with great resolution. A versatile cuckoo-search-moth-flame fusion 
optimized method is then used to aggregate the forecasting results. To rectify errors, the model employs a multi-
faceted error regression technique. [23] provided a multiple CNN architecture for temporal wind nature assess-
ments, multiple LSTM, tightly connected convolutional layers, and numerous input features. Multiple features 
of Densely Connected Convolutional Neural Network with Multifaceted LSTM Architecture is the name of the 
designed architecture. The input planes of the MCLT contain 58 features created using values for wind speed 
and direction. Past supervisory management, as well as acquiring information about the system collected by a 
lot of turbines (WTs) across multiple windmills, and Wasserstein distance-based adversarial training is subse-
quently used for estimating the average wind speed likelihood density function associated with the focus on wind 
generator at the subsequent date and time [24]. An enhanced heterogeneity density network is given to preserve 
better the variability structure seen in previous wind velocity series and to figure out the parameters utilised in 
a probabilistic heterogeneity approach to estimate the wind’s speed. The wind speed intervals estimation model 
is proposed using a quasi RNN in [25] and the lower upper bound estimate method. Because of Meta-heuristic 
efficiency approaches with a non-differentiable function of loss. must be used to train the model. An additional 
variance that contains two target functions and enables regular stochastic-based gradient descent for network 
training. The recommended method produced short intervals with high coverage, according to the results of the 
computer experiments, which enabled it to enhance the coverage width criterion by 33.2%. Sensitive in choosing 
hyperparameters such as training rates, number of batches, or network designs. AR and SVM based on the hy-
brid method [26] used the wavelet decomposition approach, the wind speed time series are divided into several 
frequency components, and each frequency component is modeled separately. Even though wind speed oscilla-
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tions exhibit various dynamics over a range of time scales, effective modeling techniques can greatly reduce the 
error in the prediction. Attention-Based Graph Networks and Deep Learning [27] have been used for wind speed 
prediction, which increased the forecasting method’s effectiveness and dependability by increasing prediction 
accuracy. According to the results, the model greatly outperforms a multilayer perceptron and a BiLSTM model, 
while a simple GNN model is performed on par. Furthermore, the suggested graph attention architecture is easily 
adaptable to various applications by providing flexibility in the preferred attention operations, which may vary 
depending on the particular application. Particularly, it appeared that the attention networks realized turbine con-
nections consistent with some physical sense regarding wake losses.

Different factors influence the accuracy of predicting ocean surface winds. A Multi-Modular Semantic Data 
Analysis (M2SDA) method is proposed to address the missing data errors across different accumulation re-
gions to improve the forecast precision. The primary contribution of this study is the proposal and evaluation 
of the M2SDA method, which identifies and addresses missing data issues in ocean surface wind forecasting by 
combining artificial intelligence-based analysis and semantics methodologies. This system provides a fresh and 
creative way to tackle a significant problem in weather forecasting. The objective is to increase the precision of 
predicting weather and tides for household and commercial uses. The main objective of this study involves:

•	 Assemble massive amounts of data from many oceanic locations utilizing buoy sensing and sensors 
placed all over the ocean surface.

•	 Use semantic analysis methods to find missing data errors utilizing artificial intelligence-based analysis.
•	 To avoid pauses in data analysis, consider estimating durability based on sensing and aggregating tempo-

ral components.
•	 Analyze the M2SDA method’s performance in comparison to other methods by using objective measures 

like precision, error, analysis of period identification proportions, and analysis ratio.
The manuscript is organized into sections in the manner described below: Section 2 discusses the suggested 

data analysis procedure. Section 3 analyzes the performance evaluation of the proposed method, and finally, a 
summary of the study’s work is given in Section 4.

2   Proposed Data Analysis Method

Ocean surface wind represents the magnitude and direction present in the ocean, based on which the forecast of 
the ocean surface wind is modeled with the sensors placed at the bed and buoys in the oceans. The winds in the 
oceans are considered the main factor in the study of oceans, which identifies the lifestyle of the marine environ-
ment. The ecosystems protracting sea currents and waves and the sediments of materials on the sea floor are used 
to analyze the different stages of erosion procedure at the seafloor. The ocean surface winds play a vital role in 
determining the momentum flux and energy of the winds, including the stresses caused by waves and the circu-
lation of oceans. It provides heating and cooling effects and increases the salinity of the ocean with an exchange 
of gases between the atmosphere and oceans. A consistent dataset with higher resolution within the specific inter-
vals is needed to analyze and predict the forecast of the wind conditions. The dataset aggregated from the sensor 
must also address the fluctuations representing climatic conditions such as the el-Nino effect. Fig. 1 depicts the 
suggested M2SDA process.

Fig. 1. Implementation of the M2SDA process
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A sensor at the buoys for monitoring the ocean surface wind is capable of multi-tasking operations. It re-
quires different configurations for periodic sensing and data aggregation with sufficient energy. The hardware 
and mechanical design must be fault tolerant for the efficient monitoring of temperatures in the ocean resulting 
in analyzing the ocean surface winds. The data from these sensors are monitored for different parameters: wind 
direction, wind speed, wind adjustment, and wind components. From these sorts of data, the ocean surface winds 
are forecasted. The wind data from the buoys are extracted, which are of vector quantities. These data are divided 
based on the orthogonal components representing the wind direction, namely x direction and y direction. These 
directions are denoted as A and B. The surface winds and their components in the equatorial regions represent 
warm pool conditions which are tedious for monitoring weather and climatic conditions. A time interval of data 
is extracted, mentioning the wind burst, wave propagation, and wave storms. The observations from buoys sen-
sors are sparsely distributed, and the coverage area is too small. 

2.1   Aggregation Process

Let Av(pj, t) and Bu(pj, t) denote the wind direction components placed at the location {where j=1,…..,k} and 
observed for the time interval {t where t= 1,….., T}. The data extracted from the sensors’ wind direction are 
variable for the spatial and time intervals denoted as mt. The vectorization for the wind direction components is 
represented as At and Bt. These vectorizations of wind components tend to be the combined list which is denoted 
as k+ mt, and the overall collection of vectors which is denoted as {A}q

r representing {At = q, …, r} at time inter-
vals. The wind data observed are said to be independent of time {A}T

1 and {B}T
1 which denotes the true values of 

observations which are as shown in Eqn (1)

{ } { } 1 1 11 1 ; | ][ | ]T T
t tA B A Bθ θ θ= (1)

θ is the parameter used in data. The covariance of the matrices Σt is diagonal with unknown variances σ. The 
elements k which are diagonal to σ are equal to mt. For each interval t, Ht is represented as shown in Eqn (2) 

( )t tH k m n= + ×  (2)

It represents the data observations for the location of the buoy’s sensors. Based on the data, it is partitioned for 
mapping matrices which are denoted by the Eqn (3)

( )' ',t a sH H H t ′ =  
(3)

The above representation of Eqn (3) denotes the matrices aH ′  and ( )sH t′  for k × n and mt × n set of observa-

tions. aH ′  denotes the conditional means of the data i.e., from the observation location within the coverage dis-
tance ∝ . The weights are assigned based on the linearity as shown in Eqn (4) 

( )
*

iW
w

α α−
=  (4)

From the above Eqn (4) αi is the distance between the observation location and the ocean surface and w* are 
the weights assigned based on the linearity, ( )]sH t′ ′  is the matrix that simplifies the mean of the observation from 
the location of surface buoys sensors. The data representation for continuous and discrete sequences is presented 
in Fig. 2.
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Fig. 2. Data representation for continuous and discrete sequences

The aggregation data is represented using the AT and BT for 1 to t and 1 to T ∀ such that the representation is 
valid. In this process, the continuous representations are split using AT. BT. If only BT is available, then Ht repre-
sentations are confined within (t, T). Therefore W is subtracted for extending α for which H(t) serves as the con-
tinuous representation (Refer to Fig. 2). The variability of the wind fields on the ocean surface is represented by 
considering the atmosphere depth, which is approximated as a thin fluid as shown in Eqn (5)

 ˆF
t A t tA A Aγ= + + (5)

		
ˆF

t B t tB B Bγ= + + (6)

From the above Eqn (5) and (6), γA and γB are the spatial mean for the wind components, AF
t and BF

t are the 
wind component approximation related to the atmosphere depth,  tA  and  tB  denotes the motions of the sea 
waves. The symbols γA and γB are the spatial mean for the wind direction components described in terms of γA 

and γB with the aggregated information. The wind direction elements with γA as low, γB as high and (γA ∙ γB) as 
non-linear identification for conditional analysis in the linear regression basis is employed for identifying the 
classifications with three basic conditions as γA > γB, γA < γB and (γA = γB). To prevent the difference in the condi-
tion (γA = γB) the following parameter At and Bt ∀ β variation is validated. Similarly, the representation for classi-
fication γA ∙ γB ∈{1 to T} is validated for further analysis of reducing mean square error.

To maintain the linearity of the equation by eliminating non-linear terms for momentum and simplification of 
the atmosphere depth, an approximation is related to satisfy the shallow linear equations on the equatorial plane 
in two-dimensional form. It is denoted as a (X, Y) plane based on which the equatorial mode on an orthogonal 
basis set is derived as shown in Eqn (7)

( ) ( ), ; , ;E E
mm

b X Y t b X Y t=∑ (7)

The Eqn (7) represents the plane of the equatorial mode represented in a two-dimensional plane satisfying the 
momentum of the sea surface for the atmosphere depth. These data observations are used to analyze the dynam-
ic nature of the atmosphere and the ocean surface. These observations of data, it is analyzed for the continuous 
set of data and discrete set of data. It is based on the sequence of data aggregated from the beds and the sensors’ 
buoys for forecasting the ocean surface winds. It is analyzed for different conditions based on which the data is 
classified as continuous or discrete. Continuous data is the data that tends to replicate data observed at different 
time intervals. In contrast, discrete data is the data that identifies a set of missing variables when observed at dif-
ferent time intervals. Some of the conditions based on which the data is classified as continuous or discrete are 
identified as follows:
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1.	 The observed data is analyzed for variations if the condition tends to be low. Then there is the least possi-
bility for variation of observed data from buoys sensors.

2.	 If the condition tends to be high, then there is the highest possibility for the variation of observed data to 
forecast ocean surface winds. 

3.	 If the variation of data happens to be low and high, then the observed data is considered to be the linear 
information data observed using multiple sensors employed to forecast the ocean surface winds. 

From the observed data, a dataset is used for linear regression learning to identify data’s intersection valida-
tion and forecast the ocean surface winds. The data processing based on the intersection of variables at different 
time intervals is analyzed. The conditional analysis is illustrated in Fig. 3.

Fig. 3. Conditional analysis

The Ht ∀ AT. BT is used for analyzing the variation for which γA, γB  and (γA ∙ γB) are used for low, high, and 
non-linear identification. Based on ω assignment, {AT}.{BT}, and bE requirements are classified. The above-rep-
resented conditions are balanced in detecting multiple variations for Ht . This is required for the linear analysis 
discussed in the following section. 

2.2   Data Analysis

The input data at different time intervals are aggregated which is represented as ∂A, ∂B and the output is δ. The 
input of the data is considered as the vector which is denoted as ∂A,B = [∂AB1, ∂AB2, … ,∂ABn ]. These input data vec-
tors belong to the respective location of observation. It is observed for time intervals which are represented as T 
= [T1, T2, …, Tn]

d. The functions of mapping the data at different time intervals T into patterns for the forecast of 
ocean surface winds are defined as shown in Eqn (8)





,

,
2

,( )

AB d d

AB d n
AB t dt

T T

T T

−

∂ =
−∑

(8)

From the above Eqn (8), t = 1, 2, …, T is the time intervals at which the observation of data occurs with TAB,d 
is the time series of data with a mean load of 



dT  for the period of t. From Eqn (8), the vector Td is subtracted 
from the components and then it is divided by its length. Thus, the normalized vector ∂AB is obtained. The data at 
different time intervals represent the same mean and variance. Thus, it maintains continuous data of observation 
from surface buoy sensors.  The linearity in input to forecast data analysis is presented in Fig. 4.
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Fig. 4. Input to forecast data analysis

As shown in Fig. 4 the y axis 1, 2, …, t represents the time intervals and the At and Bt in the horizontal repre-
sentation of default case represents the mean load used to observe the data points time series. In the second and 
third condition (γA < γB) and γA = γB with respect to time interval the horizontal axis ρ represents the dependent 
variable represents the best line of fit for relationship between target and forecasted data.

The conventional to variation conditions are analyzed using ∂AB,d ∀ ρ. This ρ across distinct t requires At and 
Bt ∀ bE separation. Post this separation, At and Bt ∀ β (variation) is estimated to preventing γA = γB condition. 
Therefore, γA > γB to (γA < γB) condition is validation is validated for linear analysis (Refer to Fig. 4). The vari-
ables in the vector ∂AB represents the input data with O as the output variables of data which denotes the forecast 
of ρ. The output of the forecast vector with data is ρd = [ρd1, ρd2, ρd3, …, ρdn]

T which is as shown in Eqn (9)





,

,
2

,( )

d d

AB d n
AB t dt

T T

T T

ρ

ρ

−

=
−∑

(9)

Eqn (9) forecasts the database on the input vector. From Eqn (8) and (9), the input data and the corresponding 
data forecast are unified according to the time intervals of data observations. From these unified data, the rela-
tionship between the input and the output is analyzed using linear regression learning by analyzing the neigh-
borhood variables in the input data. It is used to find the intersection of variables in the data. It is being modeled 
based on the predictors, i.e., input data, to highlight the relationship of data. The best line of fit represents the 
mapping of target data to predicted data. i.e., input data to forecasted data is given by 

0 1 ABρ ϑ ϑ= + ∂ (10)

From the above Eqn (10), the best line of fit denoting the relationship between the target input data and the 
predicted forecast data, which denotes the ocean surface winds, is obtained. This relationship denotes the positive 
linearity between the input and forecast data. The variable in Eqn (10) ρ represents the dependent variable and 
∂AB represents the independent input data, ϑ0 is the intercept of the line and ϑ1 is the coefficient of linear regres-
sion. The forecast process is illustrated in Fig. 5
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Fig. 5. Forecast process illustration

The ρAB,d  is used for bE conditional analysis ∀ t ∈ β ; this correlates with the three conditions discussed above. 
Based on the forecast, the non-linear validation ∀ρ is performed. The identification of γA.γB  ∈ [1 to T] from 
which the mean square error is further validated. The bE (segregation) is analyzed further for Ht in the forecast 
process (Fig. 5). The cost function for the linear regression learning is calculated, which denotes the average of 
the squared errors between the target input data and the forecast of ocean surface wind. The mean square error 
function is represented as shown in Eqn (11)

2

1

1 ( )AB

ε

π

β ρ ϕ τ
ε

=

= − ∂ +∑ (11)

Eqn (11), denotes the cost function used to find the accuracy of the mapping function used to map the input 
target data and the predicted forecast data. This mapping function is also considered a hypothesis function. This 
cost function parameter is determined by using a gradient descent method which minimizes the value of the cost 
function. This forecast is possible for continuous data from the sensors. To use the discrete data for the forecast 
of ocean surface winds, the data is again aggregated from the sensors which are again analyzed for their type of 
data. These aggregated continuous data obtained from the buoy sensors are used as input data for the linear re-
gression learning algorithm. This further optimizes the performance of the proposed method by using the most 
available data for ocean surface wind forecast. 

3   Performance Assessment

The section presents the discussion on wind prediction from [28]. The dataset contains 17 fields and 613392 en-
tries for different time intervals. In this observation, wind speed, temperature, and degree are precisely used for 
predicting; the data is continuous and discrete. The intersection is observed for 24 sensings (observation) inter-
vals and 60 min of aggregation. First, the data utilized for interval forecasting is represented in Fig. 6.

Fig. 6. Data utilization for continuous & discrete
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The wind (speed, direction), wave (height, perimeter), and air (temperature, dew point) factors and their at-
tributes across different intervals are used for the prediction process. In consecutive intervals, the intersections 
based on data availability are used for prediction. Discreteness is observed if the previous observations say high 
(air) or max (wind) does not fit the consecutive time. This representation is used for different utilization inter-
vals for maximizing forecast. Following the above representation, the missing data (Variation) is estimated and 
presented in Fig. 7 for wind, wave, and Air attributes. Refer to Fig. 7 for calculating missing data (variation) 
represented in the x-axis concerning three components: wind, wave, and air. For wind, the speed and direction 
in terms of km/hr of the component are calculated based on the variations. For wave, the x-axis represents the 
height and perimeter as m about missing data variation. For the air component, the temperature with due point is 
measured as ℃ is measured concerning missing data (variation).

Fig. 7. Missing data estimation analysis

Fig. 7 analyzes the missing data for wind, wave, and air components. The missing data is estimated based on 
the three conditions illustrated in Fig. 7 ∀ ∂AB such that γA = γB  is analyzed. In this analysis, the linearity inter-
rupting features are used for validation. By utilizing the intersection in T{T1, T2, …, Tn}

d ∀ t the Ht is extracted 
from Fig. 6 representation. The aim of {AT}.{BT} from distinct intervals is estimated for leveraging the bE for 
which missing data is computed. Therefore, the aggregation features are renewed such that the intersections are 
varied. From the missing data detection and aggregation recommendations, the classification demands are ana-
lyzed in Fig. 8. 

Fig. 8. Classification demands ∀ ρ

As shown in Fig. 8, the classification demands are represented in the x-axis for three categories wind, wave, 
and air, with y-axis representation as dependent variable ρ is analyzed based on three variant conditions.

The classification demands for wind, wave and air attributes are analyzed as in Fig. 8. The 3 conditions (γA 

> γB), (γA = γB) and (γA < γB) are used for identifying the classifications. The classifications include missing and 
intersection data across distinct ρ. As the ρ increases, classification increases. Based on the convenient variation, 
the ∂ABn is validated for (γA.γB) maximization. The ω assignment is performed for stabilizing variation across 
distinct interactions. Based on this process, the Ht is reformed for bE such that At. Bt is retained for which ρ is re-
duced. Therefore the classifications are increased for preventing mean errors.



10

A Modular Data Analysis for Ocean Surface Wind Prediction using Artificial Intelligence-based Semantic Verification

This subsection provides a discussion on the proposed method’s performance using comparative analysis. In 
the comparative analysis, precision, error, analysis time, identification ratio, and analysis rate are validated. The 
variations considered are sensing intervals between 2 and 24, and aggregation time from 5min to 60mins. For 
proving the proposed method’s efficiency, a comparison with HMDL [20], CSWSF [13], and WSIP [29] is per-
formed.

3.1   Precision

The proposed multi-modular semantics data analysis technique optimizes the precision by incorporating data 
from surface buoys and analyzing the data for its nature. The sensors are placed for the ocean wind direction 
increasing the coverage of the sensors. This increases the chances of aggregating the data under different circum-
stances. From this aggregation of data, this set of data is also used for the forecast of ocean surface winds which 
enhances the accuracy of the proposed methods. The conditional classification for the varying representations 
and Ht are used for confining the variations. In the variation suppression process, the data from distinct sensing 
intervals are used for forecasting. The forecasting process then relies on missing data and forecast sequences for 
improving the aggregation/ recommendation factor. Therefore, the conventional learning from the regression 
process requires identified features for which the classifications under discreteness are suppressed. From the sup-
pressed intervals, the t and T based representations are identified for AT and BT illustrations. This is required for 
γA  and γB balancing from the previous recommendation. The learning process is instigated from this point provid-
ed the condition fails. The linear non-regressive process identifies the intervals (intersection) for leveraging the 
forecast precision (Refer to Fig. 9).

Fig. 9. Comparison of precision

3.2   Error

The proposed technique deals with the data based on the nature of data i.e., continuous or discrete type of data. 
Initially, the continuous set of data is used for a forecast which attains a state of the forecast using a linear regres-
sion learning algorithm. To further reduce the chance of errors in forecasting the ocean surface winds, the miss-
ing values from a discrete set of data are determined. To improvise the discrete type of data, aggregation of data 
from surface buoys is again initiated which further reduces the errors present within the data and increases the 
accuracy of the forecast of ocean surface winds. The error-causing condition from γA = γA post the ρ and  ∂AB,d is 
required for preventing precision drops. The identified variations ∈ MT and AT. BT in t is disintegrated for non-lin-
earity analysis. Based on the ω assignment, the bE the requirement is estimated. This estimation is used for mon-
itoring γA < γB ∀ B (non-resulting) case. Therefore, the γA above the γB or vice Versa is induced for suppressing 
errors. Depending on the segregation error, γA.γB ∈ 1 to T, the independent t is identified. Therefore, the error is 
conventionally reduced for the proposed method (Refer to Fig. 10).
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Fig. 10. Comparison of error

3.3   Analysis Time

The analysis time for the forecast of ocean surface wind with the proposed technique is less due to prior analysis 
of data. Prior study of the data entails reviewing past wind data gathered from buoys and sensors placed over the 
ocean floor. Data analysis is further enhanced by considering the average information from a specific observa-
tion point. The prior analysis of collected data can be observed using the conditional analysis approach. Then by 
offering a representative value that denotes the overall behavior of the wind data at that point, this addition helps 
shorten the analysis time. The optimal fit line is determined between the desired input data and the anticipated 
prediction data, representing the ocean surface winds. This relationship shows that the input information and 
the forecast data are positively linear. The analyzed data is used to train the linear regression learning algorithm 
which makes the forecast of ocean surface winds easier with less analysis time. This is achieved by assigning 
weights based on the linearity of data i.e., it corresponds to the distance between the observation location and 
the ocean surface. The analysis of data is further enhanced by the mean observation of data from the location of 
observation with the reduction in analysis time. The data analysis time increases if a non-linear require further 
aggregation. Therefore the analysis of previous variation and the current intersection is required. The ρA,B,d∀∂ABd 

is required for classifying discrete sequences from continuous ones. Therefore, the required classifications are 
suppressed for preventing additional bE demands. This however confines the error within specific t ∈ T for which 
mean errors are less. The conditional validation extends the above to the available γA.γB ∈ T for which miss-
ing data is computed. The computation is suppressed for reducing the analysis time; the process is consistent 
throughout the sensing intervals and different observations (Fig. 11). 

Fig. 11. Comparison of analysis time
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3.4   Identification Ratio

The identification ratio of the proposed multi-modular semantics data analysis technique deals with the mapping 
of data observed at different locations and at different time intervals. This mapping of data between the input 
vectors and the forecast based on the data optimizes the identification ratio using a linear regression algorithm. 
In a linear regression learning algorithm, the neighborhood variables are analyzed based on the relationship of 
data. Thus, the proposed technique increases the identification ratio of the input data to forecast the ocean surface 
wind. The identification ratio increases by identifying precise intersections across different intervals. The existing 
intervals are validated using discrete classifications across multiple instances for which aggregation is induced. 
From this process, the consecutive instances are analyzed for the three conditions for identifying ρ. From the ρ, 
the missing information is located in past to present observation intervals. This proposed method relies on linear 
regression for preventing periodic ups and downs across the varying classifications. Therefore, for the varying 
sensing interval inputs and the aggregation time, the proposed method performs better for missing data detections 
(Refer to Fig. 12). 

Fig. 12. Comparison of identification ratio

3.5   Analysis Rate 

Fig. 13. Comparison of analysis rate

The cost functions of the linear regression learning algorithm to perceive the accuracy of the mapping function. 
It is also said to be the hypothesis function. The cost function denotes the average of the squared errors that oc-
curs between the target input data and the forecast of ocean surface wind. It uses a gradient descent method to 
minimize the cost function. It intensifies the M2SDA method’s analysis rate. The proposed method increases 
the analysis depending on the variation and intersection observed. In the proposed method, three conditions are 
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analyzed for preventing ρ for distinct intervals. The missing data is analyzed for varying aggregation analysis 
and the consecutive intervals are validated from discrete classifications. Therefore the classifications are induced 
across multiple analytical instances. This is further validated using linear aggregation learning in failing and 
achievable conditions. The Ht and t for continuous and discrete instances are extracted for analysis. This further 
increases the w assignment for satisfying bE assignment in suppressing variations. Therefore, this analytics also 
induces improvements across different intervals (Fig. 13). The below comparison study outcomes are discussed 
in Table 1 (Sensing Intervals) and Table 2 (Aggregation Time).

Table 1. Comparative analysis summary (Sensing intervals)

Metrics HMDL CSWSF WSIP M2SDA
Precision 0.621 0.702 0.816 0.8961
Error 0.253 0.181 0.148 0.1065
Analysis time (s) 8.46 6.44 4.09 2.2935
Identification ratio 45.58 55.13 64.84 75.165
Analysis ratio 71.16 79.63 85.12 95.008

Summary: The M2SDA enhances precision, identification, and analysis ratio with 9.16%, 9.9%, and 8.19%. 
Errors as well as analysis time are decreased by 8.75% and 10.63%, accordingly.

Table 2. Comparative analysis summary (Aggregation time)

Metrics HMDL CSWSF WSIP M2SDA
Precision 0.619 0.705 0.816 0.8838
Error 0.352 0.275 0.216 0.1722
Analysis time (s) 8.21 6.07 4.35 2.0648
Identification ratio 46.69 54.56 65.35 75.152
Analysis ratio 72.26 79.35 85.17 95.684

Summary: The proposed M2SDA maximizes precision, identification, and analysis ratio by 8.52%, 10.14%, 
and 8.38%. Error as well as analysis time are decreased by 10.88% and 11.13%, accordingly.

4   Conclusion

The main work we have done is summarized as follows:
(1) This article introduced a multi-modular semantic data analysis for predicting wind speed on ocean surfac-

es. The working principle and process of M2SDA are introduced, and the data analysis model is constructed.
(2) Considering that the time factor is confined, the forecast endurance based on sensing and aggregation time 

factors is considered in the identification process, which is required for preventing breaks in data analysis. The 
environmental data observed from distinct time intervals are used for retaining the linearity in forecasting wind 
speed. The modularity is analyzed using discreteness and linearity for validating the missing sequence. 

(3) The performance of the proposed method was evaluated. The evaluation indicators are precision, error, 
analysis time, identification ratio, and analysis rate. For proving the proposed method’s efficiency, a comparison 
with HMDL, CSWSF, and WSIP is performed. Experimental results showed that the M2SDA enhances preci-
sion, identification, and analysis ratio by 9.16%, 9.9%, and 8.19% accordingly. It decreases inaccuracy by 8.75% 
and analysis time by 10.63%, accordingly, which indicates that the practicality and efficacy of the system are in-
creased by the M2SDA method’s high rate of prediction accuracy.
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