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Abstract. A data collection and trading strategy based on a three-layer Stackelberg is proposed to address 
the defects of the data collection and trading strategy of the existing Telematics group wise sensing platform. 
First, the data trading strategy is designed for the Telematics group intelligence sensing platform, and the plat-
form determines the optimal trading price according to the data volume and time limit demand of each data 
user; then the data collection strategy is designed for the platform, and the platform incentivizes the sensing 
vehicles to collect the required data volume within the limit time according to the movement trajectory, sens-
ing and transmission cost of each sensing vehicle, and the strategy minimizes the data collection energy con-
sumption and cost of the system. The strategy minimizes the data collection energy consumption of the sys-
tem and designs the optimal data trading strategy based on game theory to maximize the economic benefits of 
the system. The experimental results demonstrate that the proposed strategy makes the telematics group wise 
sensing platform obtain the best economic utility in data collection and trading and satisfies the data demand 
of data users and the reward demand of sensing vehicles at the same time.

Keywords: vehicular crowd sensing, data collection, data mining, Stackelberg game

1   Introduction

With the improvement of software and hardware capabilities of intelligent mobile devices, mobile crowed sens-
ing has become a reliable urban data acquisition method [1]. Nowadays, smart mobile devices such as mobile 
phones, laptops and on-board devices are equipped with a variety of sensors, which have strong communication, 
computing and storage capabilities. Mobile group intelligence perception can encourage mobile users to operate 
their own intelligent mobile devices, collect and upload the urban data of the surrounding environment to the 
central platform. Compared with fixed sensor networks, mobile swarm intelligence perception saves the cost of 
large-scale sensor layout and achieves effective urban data acquisition [2, 3].

Vehicular crow sensing is a typical scenario of mobile crow sensing [4, 5]. With the development and popu-
larization of vehicle networking and on-board intelligent services, there are a large number of sensors, process-
ing devices and communication equipment on the vehicle. This makes the vehicle have strong data acquisition 
and processing capabilities and can communicate stably with other vehicles and roadside equipment. The group 
intelligence perception of the Internet of vehicles encourages car owners to complete the task of urban data col-
lection and upload of the surrounding environment during driving [6, 7]. Due to the wider range, faster speed 
and more lasting energy supply of vehicle movement, the Internet of vehicles group intelligence perception has 
wider coverage and finer perception granularity than the ordinary mobile group intelligence perception [8, 9]. 
The functions of the Internet of vehicles group intelligence perception platform are divided into two parts: data 
acquisition and data transaction [10]. On the one hand, in data acquisition, the platform gives incentives to make 
the perceived vehicle complete the data acquisition task. On the other hand, in data transaction, the platform sells 
the collected data to data users in exchange for return.

However, at present, there are still bottlenecks in the research on the strategy of data acquisition and data 
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transaction. On the one hand, the moving paths of perceived vehicles are different [11], and the energy cost [12] 
and time spent to complete the task are also different. Therefore, it is necessary to comprehensively consider the 
actual situation of each perceived vehicle to formulate a reasonable data acquisition reward scheme. The current 
research on reward strategy mainly focuses on the impact of vehicle moving path and acquisition cost, ignores 
the data transmission cost and the time spent to complete the task, and lacks comprehensive consideration of 
perceived vehicle situation [13-15]. On the other hand, data users have different requirements for data conversion 
value ability and time limit for obtaining data, so it is necessary to have a reasonable data transaction scheme and 
negotiate with data users to determine the optimal transaction price and data volume [4]. The value of data de-
creases over time, especially in Internet of vehicles services, such as transportation departments, which need the 
latest road condition information to dredge traffic [12]. However, the current data transaction strategy does not 
consider the needs of data users for time constraints.

Based on the above problems, this paper proposes a data collection and trading strategy based on the 
three-layer Stackelberg game with the vehicle networking group wise sensing platform as the carrier, which con-
structs the utility model of maximizing the platform based on the game theory, and elevates the platform data 
users and sensing vehicles to the optimal utility, so as to make up for the problem of optimal data collection and 
data trading in the vehicle networking group wise sensing platform. Therefore, based on game theory, the plat-
form of the strategy proposed in this paper is the master participant, and the data users and sensing vehicles are 
the subordinate participants, respectively. In data collection, the platform integrates the movement path, required 
cost and time spent by each sensing vehicle to decide the reward for the sensing vehicle to complete the task. In 
data trading, the platform integrates each data user’s transformation value and time-constrained demand for data 
to determine the trading price. Specifically, the strategy proposed in this paper has the following innovations.

(1) A data collection and trading strategy based on a three-layer Stackelberg game is proposed, which enables 
the data center to obtain the maximum economic benefit in data trading while satisfying the needs of data users, 
effectively solving the urgent problem of optimal data collection and data trading in the Telematics group wise 
sensing platform. 

(2) A vehicle networking group wise sensing system model is designed. The system model effectively com-
bines users, platform and vehicles, integrates the advantages of all three, maximizes the data utilization and con-
version rate, increases the economic value, and optimizes the task assignment to minimize the energy cost of data 
collection.

(3) The strategy and model proposed in this paper are compared in simulation experiments, and the experi-
mental results verify that, using the proposed strategy, the platform can obtain the optimal economic utility in 
data collection and transaction, and the effectiveness of the system model.

2   System Model

In this paper, we propose a typical model of telematics group wise sensing system, which consists of three parts: 
data users, telematics group wise sensing platform, and sensing vehicles. The main role of the proposed model 
is to synthesize the advantages of multiple parties, maximize economic efficiency, and reduce the energy cost of 
data collection. Data users: acquire urban data of the specified area within the required time through data trading, 
and analyze urban data to make better decisions and improve the quality of urban services, thus transforming ur-
ban data into economic value. Telematics group intelligence sensing platform: issues urban data collection tasks 
to sensing vehicles passing through the specified area; integrates, cleans and processes urban data collected and 
uploaded by sensing vehicles; sends processed data to data users through data trading in exchange for economic 
benefits. Sensing vehicles: complete the data collection task issued by the platform within the required time, use 
the intelligent equipment in the vehicle to sense the city data in the designated area and upload it to the data cen-
ter. The vehicle network group intelligence sensing system model, using a cyclical operation mechanism. In each 
cycle, there are different data users who wish to collect the data they want through the system. Through negotia-
tion, the data center and the data user determine mutually satisfactory incentives and data requirements. The data 
center then generates the appropriate data collection tasks based on the data requirements. The data collection 
task contains the desired target area, collection time, data type and data volume. Specifically, first, the user sub-
mits the demand in the form of data to the telematics Group Smart Sense platform, and the sensing vehicle sub-
mits the information to the platform by submitting the information to satisfy the demand. Second, the platform 
assigns the data collection task to the sensing vehicles in the sensing vehicle network through the data center, and 
uses the sensing vehicles to collect the required urban data. Finally, the data center sends the collected urban data 
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to the data users who need the data after processing it through data trading, thus exchanging it for economic ben-
efits. Thus, the telematics group wise sensing system model, which is in a pivotal position in the whole exchange 
process, improves economic benefits on one hand and rewards energy costs on the other. Fig. 1 shows a typical 
telematics group wise sensing system model.

Designation areas

Base Station

① Data requirements

③ Price requirements

⑤ Transmit Data

⑤ Provide rewards

② Collect tasks

② Required rewards

④ Upload data

④ Give rewards

Data User Data exchange
Crowd sensing 

platform in IoV
Data collection Perceive vehicles

Fig. 1. Group intelligence perception system model of typical Internet of vehicles

2.1   Data User 

There are N  data users who need to purchase urban data of specified areas in a cycle, such as air quality data, 
urban noise data, water health index etc. In order to simplify the problem, this paper only considers the collection 
and transaction of one kind of city data. The amount of data required by the nth data user is ny , and the unit price 

is np . The accuracy of data analysis increases with the increase of data volume, but the marginal gain decreases 
[13, 15-19]. The higher the accuracy of data analysis, the greater the economic value to data users [3]. Therefore, 
the economic value obtained by data users from data transactions is ( )log 1n nyθ + , where nθ  is the ability of data 

users to convert data analysis into economic benefits. The transaction cost of data users is n np y . Therefore, the 
utility function of data users is:

( )log 1u
n n n n nU y p yθ= + −                                                            (1)

At the same time, the value of data decreases with the passage of time [10]. For example, in the traffic guid-
ance service, the latest traffic data is more valuable than the past traffic data. Data users need to obtain the re-
quired data in time nT  in data transaction.

2.2   Perception Vehicle

M perceptual vehicles pass through the designated urban area in a cycle. The driving track of the m-th vehicle is 
( ){ },m m mL x y= , where ( ),m mx y  is the BDS position of the vehicle. Assuming that the vehicle travels at a constant 

speed mv , the time of the vehicle travels in the specified area is 1 /m m mt L v= , Where mL  is the total length of the 

travel track. When the sensing vehicle is driving in the specified area, the sensing frequency mf  of the sensor can 
be selected for data sensing. During the driving time, the total amount of data collected by the perceived vehicle 
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is 1
m mf t , the energy consumption cost is 1

s m mc f t , and sc  is the energy consumption cost of the collected unit data. 
After the sensing vehicle completes the sensing data, it needs to upload the data to the base station through wire-
less transmission. Assuming that the distance between the sensing vehicle and the base station when the sensing 
data is completed is md , the upload rate of the sensing vehicle is:

( )0
2

0

log 1
r

m m
m

P h d
r B

w

− 
 = +
 
 

                                                         (2)

Where B is the leased communication bandwidth between the vehicle and the base station, and 0P  is the trans-

mission power. it is assumed that the leased bandwidth and transmission power of all vehicles are the same, mh

is the channel gain, and 0w  is the power of white noise. The duration of perceived vehicle rental bandwidth is the 

time spent transmitting perceived data, it is ( )2 1 /m m m mt f t r= . The communication cost is ctt
2
m, and ct is the price of 

renting spectrum bandwidth.
Assuming that the reward given by the platform to all vehicles for completing the acquisition task is R , the 

reward obtained by each perceived vehicle is directly proportional to the amount of data collected by itself. For 
similar reward allocation methods have been seen in literature [14, 15]. The utility function of the perceived ve-
hicle is the reward obtained minus the cost of collection and upload, i.e

1 1
1

1
v m m t m m
m s m m

mm m
m M

f t c f t
U R c f t

rf t
∈

= − −
∑                                                      (3)

The total time for the vehicle to complete the acquisition task cannot exceed the time delay limited by the data 
user, i.e. { }1 2

1 2min , , ,m m Nt t T T T+ ≤  , so there is:

{ }max
1

min
1n

m m m
m

T
f f r

t
 

≤ = − 
 

                                                        (4)

2.3   Internet of Vehicles Group Intelligence Perception Platform

The group intelligence perception platform of the Internet of vehicles has three functions: giving rewards to the 
perceived vehicles to complete the data acquisition task, and the reward cost R  is required; To process the data 
uploaded by the perception vehicle cost 1

m mm M
c f t

∈∑ , and c is the energy consumption cost per unit of data pro-

cessed by the platform; Deal the processed data to data users to obtain economic benefits n np y . Therefore, the 
utility function of the Internet of vehicles group intelligence perception platform is:

1
0 n n m m

n N m M
U p y R c f t

∈ ∈

= − −∑ ∑                                                            (5)

3   Data Acquisition and Transaction

In the intelligent perception platform of the Internet of vehicles, data acquisition and data transaction are the 
most important parts. How to determine the optimal transaction price and the optimal task reward is a problem to 
be solved.
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3.1   Three-layer Stackelberg Game

In the problems of data acquisition and data transaction, the group intelligence perception platform of the Internet 
of vehicles needs to determine the optimal transaction price and task reward respectively. On the one hand, the 
platform minimizes the reward cost to the perceived vehicle, and the perceived vehicle needs to compete for the 
reward by collecting the amount of data when completing the acquisition task. On the other hand, the platform 
maximizes the economic benefits in data transactions, but the platform needs to consider the reward cost and pro-
cessing cost, so it is impossible to collect the data required by all data users without an upper limit.

This paper uses three-tier Stackelberg game to solve the problems of data collection and data transaction. 
Stackelberg game is a typical non cooperative game model [15], with master and slave participants. There is a 
competitive relationship between the slave participants, and the master participants and the slave participants are 
also antagonistic. It is assumed that both the master participant and the slave participant are selfish and rational, 
and pursue their own utility maximization. The master participants make decisions first, and all slave participants 
will choose their own decisions according to the decisions of the master participants and other slave participants 
to maximize their utility. When all slave participants choose the best response, the slave participants reach Nash 
equilibrium (NE). When the main participants choose the optimal decision to maximize their utility, the game 
reaches Stackelberg Equilibrium (SE) [17-20]. At this time, no one is willing to change the decision, and all par-
ticipants achieve the best utility.

3.2   Game Model

The purpose of this paper is to maximize the utility of the platform, and at the same time, the data users and 
perceived vehicles also achieve the optimal utility respectively. This is consistent with the Stackelberg game 
model [21-25]. Therefore, this paper uses Stackelberg game as a platform to design data trading and collection 
strategies. Among them, the platform is the main participant, and the data user group and the perception vehicle 
group are two subordinate participant groups. Platform strategy is the unit price provided to each data user and 
the overall reward of the perceived vehicle group; each data user strategy is the demand of data volume; each 
perceived vehicle strategy is the amount of data collected. The problem comes down to finding Stackelberg equi-
librium to complete data transaction and collection, and the objective function is:
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The objective function is to maximize the utility of the platform. Conditions 1 and 2 guarantee the optimal 
utility of each data user and perception vehicle respectively. Condition 3 ensures that the price and reward pro-
vided by the platform are not negative. Condition 4 ensures that the amount of data required by the data user 
is not negative. Condition 5 restricts the perception vehicle to complete data collection within the time delay 
required by the data user. Condition 6 requires the total amount of data collected by all perception vehicles The 
amount of data must exceed the total amount of data required by all data users.
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4   Game Analysis

4.1   Data Collection Game Equilibrium

The utility function of the perceived vehicle is derived by fm :
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Because the second derivative is negative, the utility function of the perceived vehicle is a convex function 
about fm , that is, there is an optimal perceived frequency to maximize the utility of the perceived vehicle.

Theorem 1 the optimal decision of perceptual vehicle is
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Where |M| is the number of perceived vehicles.
Proof: Let the first derivative of the perceived vehicle is 0,

( )
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When  f *
m < 0 , that is R < CmJm , Optimal strategy of vehicle perception is  f *
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max + Jm)2/Jm Optimal strategy of vehicle perception is  f *
m = f max

m  . When  0 ≤ f *
m = f max

m  , obtained from equa-
tion (10):

{ }

2
1 1

\

m
m j j m m

j M m m M

c
J f t f t

R∈ ∈

 = =  
 

∑ ∑                                                    (11)



21

Journal of Computers Vol. 35 No. 6, December 2024

( )

( )

2
1 1

1

1

1

m
m m m m

m M m M m M

m m
m M m

m M

cM f t f t
R

R M
f t

c

∈ ∈ ∈

∈
∈

 
− =  

 
−

=

∑ ∑ ∑

∑ ∑
                                                   (12)

Substituting formula (12) into obtained from equation (11):
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Obviously, the optimal decision of perceived vehicles is related to the reward given by the platform and the 
driving path and cost of all perceived vehicles participating in the task. According to reference [26-28], when 
all perceptual vehicles choose the optimal decision, Nash equilibrium is reached between perceptual vehicles to 
obtain their optimal utility. No matter how much reward R the platform gives, the perceived vehicle can achieve 
balance and collect the corresponding amount of data. Due to the perception of the amount of data collected by 
the vehicle, as long as it meets the data needs of data users, giving more rewards will only increase the cost of 
the platform. Therefore, the optimal incentive cost of the platform is
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Substituting the utility function of the platform yields equation (15):
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4.2   Data Transaction Game Equilibrium

The utility function of the data user is derived by yn :
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Because the second derivative is negative, the utility function of data users is a convex function about yn , so 
there is an optimal data demand to maximize the utility of data users. When the first derivative is zero, the opti-
mal data demand is y*

n = θn/ Pn−1 , which is substituted into the platform utility function formula (15). When the 
platform adopts the uniform price strategy, all data users are uniformly priced P, the result of Equation (18) is 
obtained:
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Derive the equation (19):
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Because the second derivative is negative and the platform utility is a convex function, there is an optimal uni-
form price. If the first derivative is zero, the optimal uniform price is:
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When the platform adopts differential pricing strategy and formulates the corresponding unit price Pn for differ-
ent data users, the utility function can be obtained as Equation (22):
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Derivative can be obtained:
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The second derivative is negative, and there is an optimal price. If the first derivative is zero, the optimal price is:
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Theorem 1 there exists a unique Stackelberg equilibrium in a three-level Stackelberg game.



23

Journal of Computers Vol. 35 No. 6, December 2024

It is proved from formula (9) that no matter what reward is given by the platform, the perceived vehicles can 
always achieve equilibrium for data collection. It can be seen from formula (14) that for the demand of data us-
ers, the platform has the optimal reward R* to enable the perceived vehicle to complete data collection. As can be 
seen from formula (17), the utility function of the data user is a convex function about the data demand. As long 
as the price required by the platform is less than θn , data users have the optimal data demand y*

n to maximize 
the utility. That is, as long as there is the optimal price of the platform, there is Stackelberg equilibrium in the 
three-tier game. From formula (21) and formula (25), for both uniform pricing and differential pricing, the plat-
form has a unique optimal price to maximize the utility. Therefore, there is a unique Stackelberg equilibrium in 
the three-tier Stackelberg game.

5   Experiment and Simulation

In order to verify the effectiveness of the data collection and transaction strategy of the proposed vehicle network 
group wise sensing platform in this paper, the simulation environment of this experiment is built based on Python 
3.7. The range of the road network in VMEC is 2KM, RSUs are deployed at the edge of the road, and the distri-
bution of vehicle users in the road network conforms to Poisson distribution. In this paper, we test the proposed 
data collection strategy and data transaction strategy by simulating a real dataset [29-32]. The dataset records the 
real-time GPS of San Francisco cabs, and through these real trajectory data, the real-life movement of cabs is 
restored in the simulation, so that the number of selectable cabs, cab trajectories and cab speeds in each cycle of 
the experiment are directly determined by the dataset data. In this paper, we conduct the simulation experiments 
on the group wise perception of connected cars in a randomly selected area in the map of the dataset. Based on 
this dataset, we can set the number of cabs in the target area, their locations and their movement rates in each cy-
cle of the simulation experiment. The parameters set for the simulation experiment, v'=1unit/s, R = 500, m = 0.01, 
c = 0.01 [33-34].

5.1   Effect of Data Acquisition Strategy

In order to further validate the effect of the data collection strategy, firstly, the economic utility of the platform in 
terms of reward cost is verified. Assuming that the data provider perceives and collects data using selected vehi-
cles in selected target areas in each cycle, setting the total demand data to 60, 80, and 100, respectively, the pro-
posed data collection strategy is compared and analyzed, and the test results are shown in Fig. 2. Fig. 2 shows the 
effect of the platform’s reward strategy on the platform utility for different data demand amounts of data users. 
The economic utility of the platform reaches the highest when the total data demand is 60 and 80, and reaches 
1600 when the total data demand is 100. Therefore, the experimental results show that when the reward is less 
than the optimal reward R*, the platform utility is zero because the amount of data collected by the sensing vehi-
cle cannot meet the amount of data demand of the data user, resulting in the data transaction cannot be complet-
ed. The optimal utility is obtained when the platform takes the optimal decision R*. When the reward is greater 
than R*, the platform utility decreases as the reward given increases. This is due to the fact that too high a reward 
increases the cost of the platform. The higher the data demand of the data users, the higher the optimal cost the 
platform needs based on the perceived vehicles.

Second, the data collection strategy is analyzed in terms of its impact on the economic utility of the platform. 
It is assumed that in each cycle, data providers sense and collect data using selected buses in selected 20 target 
areas. Three collection strategies are selected to compare the effects, respectively, the optimal collection strategy 
is the strategy proposed in this paper, which is to develop the optimal reward amount for data collection. The 
reward amount proposed by the linear acquisition strategy is proportional to the number of perceived vehicles. 
The random acquisition strategy i.e., the reward amount is developed randomly under the condition that the data 
demand is guaranteed to be satisfied. The experimental results are shown in Fig. 3.

As can be seen from Fig. 3, among the three strategies compared, when the number of perceived vehicles is 
below 8, the platform economic utility value of the three strategies proposed in this paper is higher than the other 
two, but as the number of perceived vehicles increases, the advantage of the random acquisition strategy gradu-
ally decreases, and the platform economic utility gradually tends to be stable, and the platform economic utility 
value is 1675; the strategy in this paper and the linear acquisition strategy both show an increasing When the 
number of vehicles is 20, the platform economic utility value of this paper’s strategy is 1695, and the platform 
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economic utility value of the linear acquisition strategy is close to 1690, therefore, the platform gets higher eco-
nomic utility than other strategies by using the strategy proposed in this paper. Meanwhile, the higher the number 
of perceived vehicles, the higher the economic utility obtained by the platform.

Fig. 2. Impact of incentive cost on economic utility of platform

Fig. 3. Comparison of data acquisition strategies

5.2   Effect of Data Transaction Strategy

In order to verify the effectiveness of the effect of data trading strategy, this paper assumes that there are four data 
users involved in data trading to simulate the experimental simulation. In this paper, three methods are set for 
comparison, namely, Method 1 is the differential pricing strategy, i.e., the platform decides different unit prices 
for different data users’ data needs. Method 2 is the uniform pricing strategy, i.e., the platform adopts a uniform 
price per unit for all data users. Method 3 is a random pricing strategy, where the platform decides the unit price 
randomly for each data user. The experimental results are shown in Fig. 4.

From Fig. 4, it can be seen that the economic utility value of the platform obtained by using method 1 exceeds 
420, and the economic utility values of the platform obtained by methods 2 and 3 are less than 420, so the plat-
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form can obtain the optimal economic utility by using the differential pricing strategy, and the lowest economic 
utility is obtained by using the random pricing strategy. The differential pricing strategy is better than the uni-
form pricing approach due to the fact that the differential pricing strategy fully considers the different data value 
conversion capabilities of different data users, while the uniform pricing strategy only considers the overall data 
value conversion capabilities of data users. This shows that both the data collection platform and data users par-
ticipating in the Stackelberg game reach the so-called Stackelberg equilibrium, thus verifying the effectiveness of 
the strategy proposed in this paper in data trading.

Fig. 4. Data transaction strategy comparison

Fig. 5 shows the impact of the number of data users and the average data value transformation ability on the 
economic utility of the platform when the differential pricing strategy is adopted. When the number of data users 
is more, the platform can sell more data, which can obtain higher economic utility in data transaction. The higher 
the average data value transformation ability of data users, the higher the economic utility of the platform. This is 
because data users with strong data value transformation ability have greater demand for data.

Fig. 5. Impact of the number of data users on the economic utility of the platform
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6   Conclusions

This paper conducts an in-depth study on the problem of maximizing the data collection and data transaction in 
the group wisdom-aware platform of the telematics, and proposes a data collection and transaction strategy based 
on the three-layer Stackelberg game to achieve the optimal economic utility of data collection and data transac-
tion, as described below.

(1) This paper proposes a data collection and trading strategy based on a three-layer Stackelberg game, which 
adopts the group wisdom-aware data trading problem between the Stackelberg game theory data platform and 
data users, minimizes the energy cost of data collection and maximizes the economic utility of both the platform 
and data users. Finally, the effectiveness and superiority of the proposed data collection and trading strategy are 
verified through simulation.

(2) The strategy proposed in this paper, fully considering the data trading theory of data user utility first, starts 
the research based on the data trading in which the data platform is dominant, however, in real life, the data plat-
form and data user may take turns to dominate the market, therefore, the proposed strategy has important theoret-
ical value for the research of data trading model of multi-source fusion.

(3) Although the strategy proposed in this paper maximizes the economic utility, in data collection and data 
trading, the platform decides the optimal transaction price according to the data user’s data value transformation 
ability, and these require precise and efficient group wise perception task assignment to perception vehicles, and 
how to further improve the effectiveness of the strategy in the real environment is a problem that we study in or-
der to further research.
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