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Abstract. In the study of preference-based multi-objective optimization algorithms, the performance signifi-
cantly depends on the preference information provided by the decision-maker. Over-reliance on this prefer-
ence information can lead the algorithms to become trapped in locally optimal solutions, potentially overlook-
ing high-quality solutions in other regions. Therefore, this paper proposes a Cubic Chaos Preference Multi-
Objective Optimization Algorithm with Adaptive Dual-mode Mutation (CPMOP-DM). Firstly, this algorithm 
utilizes the cubic chaos strategy to initialize population. This strategy possesses better chaos traversal and 
optimization speed and then, helps enhance the search breadth and global convergence of the optimization 
algorithm. Secondly, a dynamic focused preference exploration strategy is proposed to enhance the quality 
and satisfaction of the selected solutions. This strategy can gradually refine the search scope via, constructing 
dynamically shrinking exploration circles. Compared to traditional preference-based algorithms, experimental 
results demonstrate the competitiveness of the proposed algorithm. It effectively balances exploration and 
exploitation searching of the algorithm, thereby enhancing the algorithm’s diversity and distribution. It also 
avoids the local optimum problem caused by over-reliance on preference information.

Keywords: multi-objective optimization strategy, cubic chaos, dynamic, exploration

1   Introduction

Multiple Objective Evolutionary Algorithms (MOEAs) are heuristic optimization algorithms for solving Multi-
Objective Optimization Problems (MOPs) [1]. It is widely used to find a set of optimal solutions among conflict-
ing objective functions, forming a solution set called the Pareto frontier.

However, in real-world scenarios, decision-makers are concerned with specific regions rather than all possible 
solutions. Therefore, incorporating preference information into multi-objective optimization has become essen-
tial.

In recent years, researchers have proposed various preference-based multi-objective optimization algorithms. 
Luo et al. [2] introduced the g-dominance Non-dominated Sorting Genetic Algorithm (NSGA-II) to allevi-
ate dominance selection pressure. Sun et al. [3] proposed HP-NSGA-II, achieving uniform distribution using 
Chebyshev distance and dynamic region updating. Dai et al. [4] used an adaptive reference region strategy to 
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prevent solution set concentration. Said et al. [5] developed r-NSGA-II, combining weighted Euclidean distance 
and preference information for strict partial order relations. Xie et al. [6] proposed a preference decomposition 
algorithm generating new standard objective vectors through boundary-crossing and hyperplane shifting. Tian et 
al. [7] leveraged Gaussian processes for preference-based optimization, improving algorithm efficiency. Zhang 
et al. [8] created a model using adaptive large neighborhood search to resolve objective conflicts, incorporating 
fuzzy preferences for efficiency and aligned solutions with decision-makers’ requirements. 

Although these algorithms perform well in incorporating preference information, enhancing search efficiency, 
and aligning solution sets with decision-makers’ preferences, they also have certain drawbacks. The main issue 
is that these algorithms tend to overly rely on the decision-makers’ preference information, which can lead to the 
solution set becoming trapped in local optima, thereby overlooking potential high-quality solutions in other re-
gions.

For this reason, this paper proposes a novel preference optimization algorithm named CPMOP-DM within the 
framework of the NSGA-II algorithm [9]. Initially, population uniform distribution is ensured through a novel 
initialization method, followed by the adoption of strategies for dynamically adjusting the preference region and 
dual-mode mutation, aiming to enhance the diversity and convergence speed of the population. The main techni-
cal achievements and contributions of this algorithm are as follows: 

(1) The algorithm introduces a cubic chaotic mapping method to initialize the population, ensuring a more 
uniform distribution across the entire search space, thus enhancing the global search capability of the algorithm.

(2) A new dynamic focused preference exploration strategy is proposed, which gradually narrows the prefer-
ence region, guiding individuals to converge towards the decision maker’s preferred region, thereby improving 
the algorithm’s convergence speed and diversity.

2   Related Works

This section provide concepts and formulas for multi-objective optimization, g-dominance strategy, and cubic 
chaotic mapping. These strategies tackle two main challenges in preference-based multi-objective optimization: 
effectively using decision-maker preferences and addressing uneven population distribution in the objective 
space.

2.1   Multi-objective Optimization Problems

A multi-objective optimization problem [10] can be generally defined as in equation (1):
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Where, y is a decision variable in the n-dimension searching space Rn, ( )my x  is the m-th objective function in 

the objective space, ( )ag x  and ( )bh x  are the a inequality constraints and the b equality constraints.
In MOPs, finding a solution that optimizes all objectives simultaneously is often challenging. Hence, the 

Pareto solution set is used as the optimization outcome [11], which enables selecting the optimal solution from 
multiple solution sets. This ensures that solutions are evenly distributed in the solution space while considering 
each objective, allowing the decision maker to choose the best solution based on specific needs.

2.2   G-dominance

Molina et al. [1] proposed a novel strategy called g-dominance, which enhances the flexibility of the dominance 
relationship between individuals using preference points provided by the decision maker. This strategy introduc-
es preference points to alter the dominance relationship between individuals, resulting in a finer partitioning of 
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the target space. It effectively improves the efficiency of the Pareto dominance algorithm in population selection. 
The strategy is defined as follows:
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2.3   Cubic Chaotic Mapping Initialization

In the traditional NSGA-II algorithm [9], randomly generated initial populations often lead to a non-uniform 
distribution across the solution space, potentially affecting algorithm performance. Among various chaotic map-
ping sequence methods, CCM is regarded as one of the more effective methods. Compared to traditional random 
initialization, CCM utilizes chaotic mapping’s characteristics to achieve a more uniform distribution of the initial 
population across the search space by introducing nonlinearity and randomness. This initialization method not 
only expands the coverage of potential solution spaces but also mitigates population concentration issues in local 
regions, thereby enhancing the likelihood of discovering global optimal solutions. From Fig. 1, a better under-
standing of the advantages of CCM can be obtained.

  

Fig. 1. Cubic chaotic map distribution traversal graph

Fig. 1 is a visualization of CCM, where m represents the chaotic value, xm represents the dimension, and Bins
represents the frequency. It can be observed from the figure that CCM exhibits better characteristics of diversity, 
stability, and randomness. In this paper, the population positions are initialized using the cubic map method [12], 
defined as follows:

3( 1) 4 ( ) 3 ( ),  ( ) 1 0,1,2...y k y k y k y k k N+ = − | |≤ =  .                                               (3)
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p p
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N M
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The initial population is generated using equation (3). Then, the population positions are mapped into the solu-
tion space according to equation (4) for initialization, where pM  represents the lower limit of the solution space 
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and pN  represents the upper limit. The main execution steps of CCM initialization are described in Algorithm 1.

Algorithm 1. CCM 
Inputs: populations pop;
Output: populations after initialization;
1：   Initialize populations using CCM;

2: Generate complementary population mpop 
of pop;

3:   If mpop < 0

4:     Constrain mpop to be between 0 and 1;

5: end

6: Calculate the Pareto rank for each individual from {pop 
� mpop};

7: Select half of the high-quality individuals as the ini-
tial population.

3   Cubic Chaos Preference Multi-Objective Optimization Algorithm with Adaptive 
Dual-Mode Mutation

This section proposes a Cubic Chaos Preference Multi-Objective Optimization Algorithm with Adaptive Dual-
mode Mutation (CPMOP-DM). The algorithm leverages the CCM strategy for population initialization, cap-
italizing on its superior chaos traversal and optimization speed. Additionally, introducing a dynamic focused 
preference exploration (DFPE) strategy aimed at refining the search scope and aligning the exploration solution 
set with preference boundaries. During the evolution of the algorithm, a dual-mode mutation enhanced (DM) 
strategy is also employed, combining differential mutation with crossover mutation. By establishing regions us-
ing g-dominance, the optimization range of the particle population can be constrained, thereby guiding the popu-
lation to iterate more effectively toward the optimization direction. The main execution steps of CPMOP-DM are 
described in Algorithm 4.

3.1   Dynamic Focused Preference Exploration Strategy

In MOPs, integrating preference information [13] is vital. However, the conventional g-dominance approach de-
lineates preference and non-preference regions solely based on decision maker input [14], leading to subjective 
influence on algorithm diversity selection.

This section introduces a new strategy termed DFPE. Initially, the preference point and region are determined 
based on decision maker input. Then, a large circular exploration area centered at the preference point is estab-
lished, from which high-quality individuals are selected iteratively. As iterations progress, the exploration area 
gradually contracts, with high-quality individuals from within it selected for the subsequent iteration’s explora-
tion area. Eventually, the exploration area becomes tangent to the preference region boundary, forming a focus-
ing circle. The main steps of DFPE are outlined in Algorithm 2.

In Fig. 2, initially, the exploration circle’s preference region is large enough to include the desired quality 
individuals, i.e., the objective vectors. As iterations proceed, the preference region shrinks until it matches the 
preference region’s radius, as shown in Fig. 3. Initially, target vectors are distributed across non-preference and 
preference regions, while in the final stage, they concentrate in the new preference regions. This occurs because 
quality individuals are selectively retained as the exploration circle shrinks.

The key to this strategy is dynamically adjusting preference regions during algorithm execution to balance ex-
ploration and exploitation. By continuously resizing preference regions, this dynamic mechanism ensures the al-
gorithm maintains sufficient diversity, increasing the chance of finding higher quality and more diverse solutions.
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Fig. 2. Exploring the preference circle Fig. 3. Focused preference circle

Algorithm 2. DFPE
Inputs: populations, Initial preference area domain, prefer-
ence points;
Output: High-quality populations;
1： Initialize temp1 and temp0 as empty arrays
2: Calculate the distance to the center point for 

each individual in the combined population 
3: for i = 1 : m
4: if the individual’s distance is less than the radius of 

the temporary circle.
5:    Putting individuals into temp1
6: else
7:    Putting individuals into temp2
8: end
9: end
10: Calculating the size of temp1 and temp2
11: if  temp1 >=pop
12:    Non-dominated sorting to select high-quality individ-

uals to be placed in the preference region
13: else
14:    Search for quality individuals from non-preferred ar-

eas to place in preferred areas until population size is 
reached

3.2   Dual-Mode Enhanced Mutation

This paper proposes an innovative DM to enhance the quality and diversity of solutions for MOPs. This strategy 
employs binary crossover mutation [15] to generate a new population, followed by differential mutation [16]. 
Binary crossover mutation simulates gene crossover and mutation in biological evolution, enabling extensive ex-
ploration of new solutions across the search space, thus generating a diverse population. where b1 and b2 are two 
parents, C1 and C2 are two offspring, V is the distribution factor, a is a random number between [0, 1], and m is a 
user-defined parameter. The larger the value of m , the greater the probability that the offspring individuals will 
approach the parents.

1 2 1 2 1
1 1( ) * *( )
2 2

C b b V b b= + − −  .                                                              (5)
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Differential mutation is employed as a secondary mutation to effectively adjust the search direction of the 
population. This strategy enhances search efficiency and global convergence by computing differences between 
individuals in the population. where 1q  and 2q  are weight coefficients, 1f  and 2f  are coefficients of Gaussian 
distribution functions using random numbers generated from a Gaussian distribution with mean 0 and variance 
1, Y * denotes the position of the optimal individual, randY  represents the position of the random individual, and 

( )Y t  denotes the position of the current individual.

*
1 1 2 2( 1) * *( ( )) * *( ( ))randY t q f Y Y t q f Y Y t+ = − + −  .                                            (8)

Overall, the DM convergence speed and solution quality of the population while preserving diversity by lever-
aging the strengths of both binary crossover and differential mutation. This strategy presents a novel and effective 
approach for addressing multi-objective optimization problems. The main execution steps of DM are described 
in Algorithm 3.

Algorithm 3. DM

Inputs: populations pop, iterations, crossover probability pc, 
mutation probability pm, decision variables x_num;
Output: mutated population;
1：  First, the population undergoes bi nary crossover muta-

tion;

2: If rand(1) < pc
3: perform binary crossover;
4: end
5: If rand(1) < pm
6:   Perform polynomial mutation;
7: end
8: Then, the population undergoes differential mutation.

9: For i = 1 : pop
10:   for j = 1 : x_num
11: if off(i, j) != x_max(j)
12:       off(i, j) = x_max(j)
13:     end
14:   end
15: end
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Algorithm 4. The main steps of CPMOP-DM
Inputs: populations pop, iterations it, preference points, ra-
dius of preference, crossover probability, mutation probabili-
ty, decision variables Preference convergence indicator y;
Output: pareto optimal solution set;
1：   CCM;
2: For i = 1 : it  
3: DM;
4:   The mutated population is then combined with the ini-

tial population;
5:   DFPE;
6: Calculate the dominance ratio of the population;
7:   if ratio >= y
8:     g-dominance sort refer to reference [2];
9:   else
10:     non-dominated sort refer to reference[14]
11:   end
12: end

4   Experiments

This section introduces the evaluation metrics, experimental parameter settings, and provides a detailed analysis 
of the experimental results. The performance of the CPMOP-DM algorithm is compared with two preference 
algorithms, g-NSGAII and r-NSGAII, using ZDT [17] and DTLZ [18] test functions. These functions are com-
monly used for algorithm performance testing. All experiments were conducted on the PlatEMO v4.4 platform 
within MATLAB R2021a [19].

4.1   Performance Metrics

In this paper, Generational Distance (GD) [20], Spread (SP) [21], and Inverted Generational Distance (IGD) [22] 
are selected as evaluation metrics due to their ability to quantify solution quality, diversity, and convergence, re-
spectively.

Firstly, GD is a commonly used metric for assessing algorithm convergence, measuring the distance between 
the algorithm’s solution set and the true Pareto frontier. Smaller GD values indicate better convergence. The 
equation for GD is:

2
1( )N

i idis
GD

N

=

=
∑   .                                                                    (9)

where disi is the minimum Euclidean distance from individual i in the population to the true Pareto frontier. This 
index is used to measure the proximity between the optimized solution set and the true Pareto front. Smaller val-
ues signify superior convergence performance, indicating closer proximity to the true Pareto front.

When addressing a multi-objective optimization problem, the resulting solution typically consists of a set 
of non-dominated optimal solutions. In the domain of preference-based multi-objective research, the optimal 
solutions of interest are those distributed around the preference point region. The evolution of a single optimal 
solution to a point may not offer additional alternative solutions for decision-making but could potentially com-
plicate the decision-making process. In addition to considering GD as an evaluation metric, SP and IGD are also 
included. A smaller SP value indicates better diversity of the algorithm. The definition of SP is illustrated in the 
following equation:
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where di represents the minimum Euclidean distance between the i non-dominated solution of the solution set 
and other solution individuals; d denotes the average value of di among the optimized non-dominated solution set 
individuals.

A smaller IGD value indicates a more uniform distribution of the solution set generated by the algorithm, ap-
proximating the real Pareto front and ensuring uniform distribution. Therefore, IGD and SP are crucial indicators 
for assessing the overall performance of the algorithm.
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Here, P represents the set of points uniformly distributed on the true Pareto surface, and |P| denotes the num-
ber of individuals in this set. Q represents the set of optimal Pareto-optimal solutions obtained by the algorithm.  
d(v, Q) signifies the minimum Euclidean distance from individual v to population Q.

4.2   General Parameters

Population sizes are set to N=100 for the ZDT series test functions, with a maximum of 200 iterations. For the 
DTLZ series test functions, population sizes are set to N=200, with a maximum of 300 iterations.

Reproduction operator: The r-NSGAII algorithm in this paper adopts average weight allocation for each target 
and sets the non-dominance threshold δ to 0.1. The R-value in the preference vector bootstrap and the explora-
tion circle are set to 0.1 and 1.0, respectively. To maintain population diversity and prevent excessive preference 
region adjustment, the preference convergence index γ is set to 0.5. Simulated binary crossover and polynomial 
mutation are chosen as genetic operators, with probabilities of 0.99 and 0.1, respectively, to balance convergence 
and diversity.

Number of evaluations and preference point coordinate settings: This paper sets different parameters for dif-
ferent test questions and dimensions, and the specific values are shown in Table 1. All the algorithms are run in-
dependently for 30 times.

4.3   Experimental Results

To comprehensively validate the competitiveness of the algorithms proposed in this paper, their performance is 
compared with that of the benchmark algorithms g-NSGAII and r-NSGAII on both 2D and 3D test functions. 
Table 2 to Table 4 present the results of each algorithm, with the algorithms exhibiting optimal performance 
highlighted by horizontal lines beneath the data.

Table 2 reveals that the r-NSGAII algorithm excels in specific scenarios. It achieves optimal GD values on 
the ZDT1 frontier, the infeasible and feasible domains of the ZDT3 frontier, and the DTLZ4 frontier. Although 
r-NSGAII generally has better GD values for ZDT3, this is due to the complex multi-modal nature of ZDT3. 
r-NSGAII use of reference points and regularization helps maintain diversity and avoid local optima, covering 
the entire Pareto front. However, the proposed algorithm consistently performs best across most experiments, 
demonstrating adaptability and robustness. By dynamically adjusting search strategies and preserving population 
diversity, it consistently finds high-quality solutions. Therefore, while r-NSGAII excels in specific cases, the pro-
posed algorithm shows superior overall balance and stability.

Table 3 and Table 4 show that the g-NSGAII and r-NSGAII algorithms perform significantly worse than the 
proposed algorithm on IGD and SP metrics. The proposed algorithm demonstrates superior diversity and distri-
bution across several test functions. On the IGD metric, it achieves closer proximity to the true Pareto frontier, 
indicating its advantage in maintaining population diversity. On the SP metric, its solution set is more uniformly 
distributed, reflecting its superiority in solution set distribution. These results highlight the effectiveness and ad-
vantages of the proposed algorithm in multi-objective optimization problems.
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Fig. 4(a) indicates poor convergence of the r-NSGAII algorithm, resulting in limited coverage of the prefer-
ence solution set and fewer alternative solutions. In contrast, both the paper algorithm and g-NSGAII demon-
strate more balanced convergence. However, g-NSGAII covers too many Pareto fronts, adding decision-making 
pressure. The algorithm in paper effectively controls the preferred solution set range, offering the decision-maker 
necessary non-dominated solutions to better meet their needs.

Fig. 4(b) and Fig. 4(d) show that both the paper algorithm and r-NSGAII exhibit similar convergence for the 
preference solution sets. However, the algorithm in paper offers a wider range of solutions aligning with the 
decision-maker’s preferences. In contrast, g-NSGAII generates too many preference solution sets, complicating 
decision-making and reducing practicality.

Fig. 4(c) illustrates distinct performances of the three algorithms. While g-NSGAII suffers from excessive in-
fluence of preference points leading to poor convergence, r-NSGAII shows good convergence but with an overly 
concentrated preference range. In contrast, the proposed algorithm excels in the ZDT2 problem by achieving 
both good convergence and accommodating decision maker’s preferences, offering diverse and personalized 
solution selections. This showcases the proposed algorithm’s robust global search capability and its ability to ca-
ter to decision maker’s requirements.

In the case of the three-dimensional test function DTLZ2, Fig. 5 depicts the preference solution sets gen-
erated by the three algorithms. As evident from Fig. 5(a) and Fig. 5(b), all algorithms converge to the Pareto 
frontier. But, g-NSGAII and r-NSGAII result in clustered solution sets, constraining decision makers’ options. 
Conversely, the algorithm in paper presents a well-distributed solution set, offering decision makers more choic-
es.

Examining the remaining graphs in Fig. 5, it is clear that the g-NSGAII algorithm shows poor convergence 
and overly dispersed solution sets. The r-NSGAII algorithm converges to the Pareto front but suffers from 
over-aggregation. In contrast, the proposed algorithm effectively handles 3D problems, achieving balanced con-
vergence across feasible and infeasible domains.

Table 1. Parameter setting of test functions

Test function Parameter 
settings

Preference point
On the frontier Infeasible region Feasible region

ZDT1 m=2;n=30 (0.5,0.3) (0.1,0.2) (0.8,0.8)
ZDT2 m=2;n=30 (0.6,0.64) (0.2,0.4) (0.9,0.9)
ZDT3 m=2;n=30 (0.24,0.28) (0.2,0.2) (0.5,0.6)
ZDT6 m=2;n=10 (0.6,0.64) (0.3,0.2) (0.7,0.8)

DTLZ2 m=3;n=10 (0.5,0.7,0.5) (0.2,0.3,0.4) (0.7,0.7,0.8)
DTLZ4 m=3;n=10 (0.3,0.4,0.5) (0.6,0.6,0.8)   (0.5,0.5,0.7)

Table 2. Results of GD calculations for each of the three algorithms run 30 times on the test function

Test function Preference point
g-NSGAII r-NSGAII CPMOP-DM

Mean Standard 
deviation Mean Standard 

deviation Mean Standard
deviation

ZDT1

On the frontier 
(0.5,0.3) 2.46E-05 1.18E-05 1.82E-05 9.03E-06 5.26E-05 9.00E-06

Infeasible region 
(0.1,0.2) 3.06E-04 1.41E-04 2.23E-04 1.16E-04 7.01E-05 9.00E-06

Feasible region 
(0.8,0.8) 8.33E-05 1.68E-05 5.70E-05 4.70E-05 4.51E-05 1.20E-05

ZDT2

On the frontier 
(0.6,0.64) 5.22E-04 3.42E-04 4.32E-04 1.27E-04 1.15E-04 1.40E-05

Infeasible region
 (0.2,0.4) 2.31E-04 2.86E-05 1.29E-04 1.43E-04 7.05E-05 1.60E-05

Feasible region 
(0.9,0.9) 1.73E-04 2.15E-05 2.75E-04 1.07E-04 1.17E-04 1.60E-05
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ZDT3

On the frontier 
(0.24,0.28) 7.58E-05 4.12E-05 5.85E-05 2.44E-05 3.16E-04 1.10E-05

Infeasible region 
(0.2,0.2) 4.04E-05 9.68E-06 2.50E-05 2.17E-05 1.30E-04 3.62E-03

Feasible region 
(0.5,0.6) 5.47E-05 4.47E-06 2.96E-05 3.55E-05 5.73E-04 3.01E-03

ZDT6

On the frontier 
(0.6,0.64) 6.36E-02 4.97E-02 5.67E-02 9.81E-03 1.10E-04 1.70E-05

Infeasible region 
(0.3,0.2) 2.13E-02 1.67E-02 1.90E-02 3.22E-03 2.18E-04 1.46E-04

Feasible region 
(0.7,0.8) 2.78E-02 2.33E-02 2.56E-02 3.19E-03 2.73E-04 7.35E-03

DTLZ2

On the frontier 
(0.5,0.7,0.5) 5.86E-04 2.52E-04 4.19E-04 2.36E-04 3.23E-04 1.60E-05

Infeasible region 
(0.2,0.3,0.4) 3.09E-03 2.29E-03 5.69E-03 5.60E-04 2.90E-04 1.80E-05

Feasible region 
(0.7,0.7,0,8) 5.32E-04 4.66E-05 3.89E-04 3.43E-04 3.23E-04 1.35E-04

DTLZ4

On the frontier 
(0.3,0.4,0.5) 4.15E-04 5.72E-05 2.36E-04 2.53E-04 5.73E-04 2.05E-04

Infeasible region 
(0.6,0.6,0,8) 7.24E-04 1.46E-04 4.35E-04 4.08E-04 3.26E-04 1.15E-04

Feasible region 
(0.5,0.5,0.7) 4.48E-04 8.08E-06 2.28E-04 3.11E-04 6.13E-04 3.35E-04

Table 3. Results of 30 IGD calculations for each of the three algorithms run on the test function

Test func-
tion Preference point

g-NSGAII r-NSGAII CPMOP-DM

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation

ZDT1

On the frontier 
(0.5,0.3) 3.13E-01 3.50E-04 1.56E-01 2.21E-01 8.87E-04 9.30E-05

Infeasible region 
(0.1,0.2) 7.76E-02 8.01E-03 4.28E-02 4.92E-02 9.52E-04 9.70E-05

Feasible region 
(0.8,0.8) 1.73E-01 2.53E-04 8.66E-02 1.22E-01 9.32E-04 8.10E-05

ZDT2

On the frontier 
(0.6,0.64) 3.68E-01 6.24E-03 1.87E-01 2.56E-01 1.10E-03 1.48E-04

Infeasible region 
(0.2,0.4) 7.15E-02 1.12E-03 3.63E-02 4.97E-02 9.40E-04 1.75E-04

Feasible region 
(0.9,0.9) 6.83E-02 2.15E-04 3.42E-02 4.81E-02 1.11E-03 1.73E-04

ZDT3

On the frontier 
(0.24,0.28) 4.80E-01 2.02E-04 2.40E-01 3.39E-01 2.61E-03 1.34E-04

Infeasible region 
(0.2,0.2) 3.01E-01 1.77E-04 1.50E-01 2.12E-01 7.16E-03 3.45E-02

Feasible region 
(0.5,0.6) 1.85E-01 1.93E-04 9.26E-02 1.30E-01 8.10E-03 2.99E-01

ZDT6

On the frontier 
(0.6,0.64) 2.45E-01 4.11E-03 1.24E-01 1.70E-01 9.32E-04 2.24E-04

Infeasible region 
(0.3,0.2) 8.96E-02 3.04E-02 6.00E-02 4.19E-02 1.34E-03 1.11E-03

Feasible region 
(0.7,0.8) 2.85E-01 8.00E-02 1.82E-01 1.45E-01 6.61E-03 7.39E-02
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DTLZ2

On the frontier 
(0.5,0.7,0.5) 5.42E-01 1.42E-02 2.78E-01 3.73E-01 4.28E-03 2.01E-04

Infeasible region 
(0.2,0.3,0.4) 1.89E-01 2.80E-03 9.59E-02 1.31E-01 3.83E-03 2.36E-04

Feasible region 
(0.7,0.7,0,8) 2.43E-01 1.65E-03 1.22E-01 1.71E-01 4.26E-03 2.36E-04

DTLZ4

On the frontier 
(0.3,0.4,0.5) 5.29E-01 2.56E-02 2.77E-01 3.55E-01 6.26E-03 1.29E-04

Infeasible region 
(0.6,0.6,0,8) 2.87E-01 1.53E-03 1.44E-01 2.01E-01 5.76E-03 2.49E-04

Feasible region 
(0.5,0.5,0.7) 3.83E-01 1.68E-04 1.91E-01 2.70E-01 4.98E-03 2.33E-04

Table 4. Results of SP calculations for each of the three algorithms run 30 times on the test function

Test func-
tion Preference point

g-NSGAII r-NSGAII CPMOP-DM

Mean Standard devi-
ation Mean Standard devi-

ation Mean Standard devi-
ation

ZDT1

On the frontier 
(0.5,0.3) 9.97E-01 1.56E-03 4.99E-01 7.03E-01 7.62E-04 1.79E-04

Infeasible region 
(0.1,0.2) 7.28E-01 2.30E-02 3.75E-01 4.98E-01 7.57E-04 1.28E-04

Feasible region 
(0.8,0.8) 8.69E-01 1.26E-02 4.41E-01 6.05E-01 6.94E-04 1.35E-04

ZDT2

On the frontier 
(0.6,0.64) 1.00E+00 1.12E-02 5.08E-01 7.03E-01 6.75E-04 9.30E-05

Infeasible region 
(0.2,0.4) 7.36E-01 2.69E-02 3.81E-01 5.01E-01 6.87E-04 8.50E-05

Feasible region 
(0.9,0.9) 6.74E-01 4.72E-02 3.61E-01 4.43E-01 6.81E-04 1.02E-04

ZDT3

On the frontier 
(0.24,0.28) 9.99E-01 4.94E-05 4.99E-01 7.06E-01 6.70E-04 1.14E-04

Infeasible region 
(0.2,0.2) 9.20E-01 1.85E-02 4.69E-01 6.37E-01 5.27E-04 1.39E-04

Feasible region 
(0.5,0.6) 8.20E-01 1.63E-02 4.18E-01 5.68E-01 7.33E-04 1.35E-04

ZDT6

On the frontier 
(0.6,0.64) 1.23E+00 3.89E-01 8.09E-01 5.94E-01 7.21E-04 8.60E-05

Infeasible region 
(0.3,0.2) 9.69E-01 3.51E-01 6.60E-01 4.36E-01 5.64E-04 3.37E-04

Feasible region 
(0.7,0.8) 9.81E-01 1.67E-02 4.98E-01 6.81E-01 1.41E-03 3.79E-03

DTLZ2

On the frontier 
(0.5,0.7,0.5) 1.00E+00 1.62E-02 5.10E-01 6.99E-01 3.64E-03 2.63E-04

Infeasible region 
(0.2,0.3,0.4) 6.01E-01 2.45E-02 3.12E-01 4.07E-01 3.61E-03 2.70E-04

Feasible region 
(0.7,0.7,0,8) 6.58E-01 6.49E-03 3.32E-01 4.61E-01 3.64E-03 2.70E-04

DTLZ4

On the frontier 
(0.3,0.4,0.5) 9.93E-01 2.89E-03 4.98E-01 7.00E-01 2.74E-03 2.30E-04

Infeasible region 
(0.6,0.6,0,8) 5.58E-01 2.34E-01 3.96E-01 2.29E-01 3.96E-03 2.00E-04

Feasible region 
(0.5,0.5,0.7) 7.98E-01 1.34E-02 4.06E-01 5.55E-01 3.81E-03 1.70E-04
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(a) ZDT1 feasibility region (b) ZDT1 infeasibility region

(c) ZDT2 frontier (d) ZDT2 infeasibility region

Fig. 4. The preference solutions from running the 3 algorithms on the ZDT test function

(a) Front view with preference point on the leading edge (b) Side view with preference point at the leading edge
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(c) Orthographic view of a preference point in a feasible 
region

(d) Side view of a preference point in a feasible region

(e) Orthographic view of a preference point in an infeasible 
region

(f) Side view of a preference point on an infeasible region

Fig. 5. The set of preference solutions obtained by running the 3 algorithms on the DTLZ2 test function

5   Conclusion

This paper proposes the Cubic Chaos Preference Multi-Objective Optimization Algorithm with Adaptive Dual-
mode Mutation (CPMOP-DM). The population is initialized using CCM for uniform distribution across the 
search space. A DFPE balances exploration and exploitation while adjusting the preference region dynamically, 
ensuring solution set diversity. The DM combines binary crossover mutation and differential mutation to guide 
the search towards global optima and thoroughly explore the search space. Compared to traditional prefer-
ence-based multi-objective optimization algorithms, CPMOP-DM excels in most cases on IGD, SP, and GD met-
rics, demonstrating superior diversity, convergence, and distribution.

The algorithm proposed in this study shows significant advantages in addressing multi-objective optimization 
problems. However, there are still some limitations. Particularly, its performance is not satisfactory when dealing 
with the ZDT3 test function. ZDT3 function exhibits nonlinearity and multi-modality, posing higher demands on 
the algorithm. Therefore, improving its performance in handling similar problems is an important direction for 
future research.
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