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Abstract. This paper proposes a multi-scale attention fusion mechanism for automatic gland segmentation 
based on the colorectal adenocarcinoma cell dataset, aiming to address the issue of unclear cell adhesion 
and confusion with the background in colorectal adenocarcinoma cell instance segmentation. Deep learning 
methods are employed for top-down gland cell instance segmentation. The neural network features a novel 
spatial-pyramid dual-path attention module that not only integrates multi-dimensional feature map spatial 
information but also enriches feature space through cross-dimensional feature information interaction. With 
the assistance of the new fusion module, it can perceive higher resolution features effectively fuse multi-scale 
features, leading to higher segmentation accuracy, stronger robustness, and generalization. It demonstrates 
excellent performance on the GlaS and CRAG datasets.
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1   Introduction

With the modern pace of life accelerating, unhealthy diets, lifestyles, and environmental pollution have had a 
certain impact on human health, especially leading to the development of colorectal adenocarcinoma, which is 
the third most common type of cancer globally. Early observation of colorectal adenoma tissue slice images and 
statistical analysis based on the morphology of individual cells can help detect the degree of colorectal adenoma 
lesions at an early stage, playing a crucial role in formulating treatment plans for colorectal adenocarcinoma. 
Adenocarcinoma cell instance segmentation is a necessary step for pathologists to quantitatively analyze the ma-
lignancy of adenocarcinoma. Currently used segmentation methods include manual visual inspection and com-
puterized pathological image analysis. Generally, the accuracy of manual visual inspection is higher than that of 
computerized methods, but manual visual inspection requires a large amount of labor. Due to differences in expe-
rience among different doctors, and the same doctor’s state may also vary at different stages.

Accurately segmenting glands in histopathological images is a prerequisite for conducting pathology im-
age-assisted diagnosis and holds significant importance. There are many segmentation methods currently 
available, including those based on traditional machine learning and deep neural networks. Traditional image 
processing methods work well for segmenting benign glands but perform poorly for malignant glands with ir-
regular shapes. Additionally, traditional methods rely too heavily on manual features and prior knowledge. The 
irregularity of malignant glands increases the difficulty of gland instance segmentation, making it challenging for 
traditional natural image processing methods to meet the requirements of current gland instance segmentation 
tasks. Deep learning is the latest trend in machine learning and artificial intelligence research. Researchers are 
combining deep learning models with the characteristics of colorectal adenocarcinoma cells to study and grad-
ually improve segmentation algorithms, which can effectively capture boundary information in images, thereby 
enhancing segmentation accuracy.

The success of deep learning segmentation methods is attributed to the powerful feature learning and ex-
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traction capabilities of deep neural networks, which can perform pixel-level image classification and solve 
semantic-level image segmentation problems. Deep learning methods can automatically extract features from 
images and perform classification and recognition in an unsupervised manner, making them widely applicable in 
image processing. As a result, research on automatic gland segmentation using deep learning methods is gradual-
ly gaining attention. In 2016, Chen et al. proposed an efficient deep contour-aware network (DCAN) that utilizes 
multi-level contextual feature representation in an end-to-end manner to achieve precise gland segmentation, ca-
pable of simultaneously outputting probabilities of glands and gland boundaries [1]. In 2017, Xu et al. introduced 
a multi-channel convolutional neural network and designed a sub-network that efficiently integrates outputs from 
multiple channels [2]. This method not only incorporates target detection and edge detection for each gland with 
spatial constraints but also enhances instance segmentation performance by fusing contour information with po-
sitional information through two-channel integration.

Yan et al. proposed an innovative loss function composed of a shape similarity loss and weighted pixel 
cross-entropy to obtain well-shaped glands and effectively separate adherent glands [3]. The overall network 
structure is similar to DCAN, as it is a dual-task network capable of simultaneously outputting probability maps 
for glands and boundaries. This loss function reduces model overfitting and improves training and execution 
speed, making the model more stable and faster to converge. Graham et al. introduced the Minimal Information 
Loss Dilated Network, which utilizes dilated convolutions and spatial pyramid pooling to incorporate high-reso-
lution information in the middle of the network [4]. At the end of the network, random transformation sampling 
is used to reduce model uncertainty, thereby enhancing the accuracy of segmentation.

In 2017, Yang et al. proposed an efficient training data method that combines active learning framework with 
Fully Convolutional Network (FCN) [5]. This method reduces annotation workload and model uncertainty by 
searching for the most effective annotated areas and integrating the similarity and uncertainty information pro-
vided by FCN. In comparison to previous methods, the active learning-based approach only requires half of the 
training data to achieve highly competitive results. In 2020, two efficient gland segmentation methods emerged. 
Ding et al. introduced a multi-scale fully convolutional network that integrates dilated convolutions and resid-
ual structures to extract features with different receptive fields corresponding to objects of different sizes [6]. 
Additionally, Wen et al. presented a Gabor-based Cascade Squeeze Bi-Attention Network [7]. The Gabor-based 
encoder module in this network not only captures rich image texture features but also enhances the interpretabili-
ty of convolutional kernels.

2   Network Design

2.1   Algorithm Description

Traditional gland cell instance segmentation methods typically start with pixel-level classification, followed by 
a combination of object detection and semantic segmentation for instance segmentation. This approach makes 
it difficult to perceive objects simultaneously during the segmentation process, leading to potential errors in in-
stance segmentation. To address the issues of mis-segmentation and lack of segmentation precision commonly 
encountered in existing gland cell instance segmentation methods, this paper adopts an end-to-end approach for 
two-stage gland cell instance segmentation [8]. Building upon the Mask R-CNN model, this method proposes a 
multi-scale attention fusion gland cell instance segmentation network, as illustrated in Fig. 1. It enables end-to-
end learning to simultaneously output the positions and categories of candidate boxes as well as the masks for 
target instance segmentation.
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Fig. 1. The network structure diagram of this method
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2.2   Dual Attention

The dual-path refinement attention module proposed in this paper models semantic correlations in both spatial 
and channel dimensions by attaching two modules: the spatial attention (GSA) branch and the pyramid compres-
sion attention (PSA) branch.

The PSA mechanism can learn multi-scale feature representations from input images and recalibrate channel 
attention weights at different scales, thereby fully extracting multi-dimensional spatial information of feature 
maps and realizing cross-dimensional feature interaction. The PSA mechanism proposes a multi-scale feature 
map extraction strategy based on the Squeeze-and-Excitation Networks (SENet) and the overall structural di-
agram is shown in Fig. 2. It combines feature information at corresponding scales to form a feature pyramid, 
aiming to achieve multi-scale feature fusion, enrich feature space, and generate better pixel-level attention. The 
most important module for multi-scale feature extraction in the PSA module is the SPC, which is mainly imple-
mented in the following steps. First, the input feature map is grouped, and the Squeeze and Concat (SPC) module 
is used to partition the channels of the feature map to obtain multi-scale feature maps in terms of channels. Next, 
the SEWeight module extracts the target features of the multi-scale feature maps to obtain spatial-level visual at-
tention vectors. Then Softmax operation is applied to recalibrate the weights of the attention vectors for the cor-
responding channels. Finally, the calibrated attention vectors are element-wise multiplied with the feature map to 
generate the output.
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Fig. 2. The overall structure of pyramid compressed attention mechanism

(1) SPC module
The SPP module can perform multi-scale pooling operations on the input feature map while keeping the net-

work input size unchanged [9]. Its basic structure is shown in Fig. 3. Each branch feature map of Fi has an input 
channel number of C and an output channel number of Cꞌ =C/S, where i=0,1,…,S-1 and S=4. Each branch at dif-
ferent scales independently learns the spatial information of the input feature map without interference and inter-
acts information when concatenated for integration. To avoid a significant increase in computational complexity 
of convolutional kernels, the group convolution method is introduced.
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Among them, K represents the size of convolution kernels at different scales, and G represents the size of the 
group. C D H WX × × ×=   represents input feature maps, and C D H W

iF × × ×=   represents branch feature maps of dif-
ferent scales.
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In the context, ki represents the size of the i-th convolutional kernel, and Gi  represents the size of the i-th 
group. At that time, k0 = 3, and G0 has the default value of 1. The number of channels in the input feature map 
for the classification experiments in this paper is C=160, and the number of channels for each branch of the SPC 
module, denoted as C’, is 40. Since C’ must be divisible by Gi, k3 = k2 = 7, G3 = G2 = 8 is set.

0 1 1([ , ,..., ])SF Cat F F F −=                                                             (5)

Among them, C D H WF × × ×∈  represents the complete multi-scale feature map obtained by integrating each 
branch feature map Fi through cascading.
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Fig. 3. Basic structure of SPC module

(2) SEWeight module
The basic structure of the SEWeight module [10] is shown in Fig. 4, which is derived from the excitation 

part of SENet. It can allocate weights to channels after channel interaction, ultimately obtaining feature maps 
with channel attention, effectively improving model accuracy. The SEWeight module mainly consists of Global 
Average Pooling (GAP) and Excitation. Through GAP, the SEWeight module uses the average value of each fea-
ture map as the overall representation of that feature to obtain global information for each channel. The excitation 
module learns specific sampling activation for each channel through two fully connected layers, controlling the 
excitation of each channel. The main function of this module is to obtain feature channel weights. Firstly, each 
channel feature map is computed into a scalar as the weight of the feature map through global pooling. Then, it is 
multiplied and added channel-wise to the previous feature to recalibrate the original features of the channels, in-
tegrating the feature information from each channel. This process results in obtaining more refined feature maps 
with richer multi-scale feature information. After multi-scale processing, each branch feature map Fi extracts the 
channel attention of the corresponding scale feature map to obtain its weight vector 1 1 1C

iZ ′× × ×∈ .

 ( )i iZ SE Weight F=                                                                 (6)
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gC represents the GAP operator, cw represents the attention weight of the c-th channel in the SEWeight mod-

ule. W0 ∈
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C C
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×

  and are fully connected layers, δ denotes the ReLU operation, and σ represents 
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the activation function. Fully connected layers efficiently fuse feature information between channels and fully 
interact high-dimensional and low-dimensional information across channels. The activation function σ allocates 
weights to channels after information interaction, enabling the model to acquire rich feature information. The 
multi-scale channel attention vector att integrates branch feature map vectors across dimensions in a concatenat-
ed manner, facilitating information interaction of attention weights.
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i i S
i i

Z
att Soft Z
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= =
Σ

                                                    (9)

0 1 1Satt att att att −= ⊕ ⊕ ⊕                                                        (10)

Where ⨁ represents the concatenation operator. To ensure that the sum of channel attention weights of branch 
feature maps is 1, Softmax is applied to recalibrate the attention weight vector Zi. Finally, multiplying the multi-
scale channel attention weights att with the multi-scale feature map F forms the pyramid compressed attention 
feature map Y.

Y F att=                                                                (11)
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Fig. 4. Basic structure of SEWeight module

2.3   Loss Function Design

This article uses two Dice loss functions [11] to optimize segmentation models for different enhancement do-
mains, and ultimately guides the optimization segmentation of the entire network model by summarizing the two 
losses. The Dice loss function is defined as follows:

2
1dice

A B
L

A B
= −

+


                                                               (12)

Among them, |A| and |B| represent the truth map and prediction map of the segmented labels. The final loss 
function can be defined as:

( ( ), )+ ( ),S S d d
dice diceLoss L BN X Y L BN X Y=                                       (13)

In formula 13, BN(X S) represents a batch normalization layer for processing data with similar sources, which 
can enable the network to converge faster during training; Y S represents a batch normalization layer for process-
ing data with similar sources, which can enable the network to converge faster during training; represents the 
prediction result of the source similar domain, and similarly, BN(X d) and Y d represent the batch normalization 
layer for processing source dissimilar data and the prediction result of the source dissimilar domain, respectively.



50

Research on Image Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention

3   Experimental Content

3.1   Experimental Environment

The experimental training environment in this study was developed on a desktop machine running Ubuntu 18.04, 
with CUDA version 10.2, Python version 3.9, using the MMDetection 2.17 framework, and utilizing an NVIDIA 
GeForce GTX 2080 Ti GPU. The Mask R-CNN [12] was used as the baseline in the experiment, with all hyper-
parameters, except for specific modules, being the same as those implemented in the Mask R-CNN algorithm in 
the MMDetection framework [13]. 

3.2   Experimental Evaluation Criteria

The evaluation metrics used in this study include mAP, as well as AP50, AP75, APS, APM, and APL. Here, L/
S/M respectively represent Large/Small/Middle, indicating the evaluation performance on large objects, small 
objects, and medium-sized objects. We conducted detailed comparisons of various segmentation methods using 
different experimental parameters to evaluate their segmentation performance.

In instance segmentation tasks, Intersection over Union (IoU) is used to define the loss function for bounding 
box regression. The idea is to calculate the ratio between the intersection area and the union area of the predicted 
box and the ground truth box, indicating the correlation between the two sets of data, i.e.:

P GT

P GT

M M
IoU

M M
=





                                                               (14)

IoU is used to evaluate the difference between predicted values and ground truth values. The magnitude of 
the value indicates the level of similarity and accuracy of the prediction. An IOU value of 1 signifies complete 
agreement between predicted and actual pixels. At a certain threshold, the model classifies results with an IOU 
value greater than the threshold as positive samples and those with an IOU value less than the threshold as nega-
tive samples. In the evaluation method used in the experiment, when averaging, thresholds ranging from 0.95 to 
0.5 are utilized with a step size of 0.05. Calculations are performed within each interval to evaluate the predicted 
results.

TP, FP, and FN stand for True Positive, False Positive, and False Negative respectively. They are calculated 
based on the predictions compared to the ground truth annotations. TP represents the number of positive samples 
that are classified correctly by the algorithm, FP is the number of negative samples that are classified incorrectly 
by the algorithm, and FN is the number of positive samples that are classified incorrectly by the algorithm. These 
variables can be used to further calculate Precision and Recall, with the following formulas:

Precision TP
TP FP

=
+

                                                             (15)

Recall TP
TP FN

=
+

                                                               (16)

3.3   Experimental Results and Analysis

This method has been implemented on the GlaS and CRAG datasets to evaluate various commonly used image 
segmentation techniques in recent years, comparing them with our network using multiple evaluation metrics. 
The compared methods include baseline methods such as SOLO [14], YOLACT [15], Mask R-CNN, Mask 
Scoring R-CNN, Refinemask [16], and Point Rend. The experimental results are compared and evaluated as 
shown in Table 1. Compared to the baseline method Mask R-CNN, our method demonstrates superior perfor-
mance, achieving higher quality and more accurate masks.
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Table 1. Comparison of performance using different instance segmentation methods on the GlaS dataset

Moddel Segm
mAP

Bbox
mAP APS APm APL AP50 AP75

SOLO
YOLACT

MS R-CNN
Refinemask
PointRend

Mask R-CNN
Ours

42.4
57.5
64.1
65.2
66.6
64.2
67.3

0
53.4
62.1
61.9
63.4
61.3
65.3

3.1
1.8
6.6
9.2
7.2
10.1
6.1

60.1
34.2
63.1
65.5
64.7
64.8
65.5

59.8
50.8
66.9
69.2
71.5
65.8
72.1

70.4
80.5
84.4
83.8
85.4
82.8
85.6

66.9
45.3
73.8
76.0
78.1
73.5
78.6

By applying different segmentation methods on the GlaS dataset for image segmentation, the performance 
differences of each segmentation method can be deduced through comparisons using various evaluation met-
rics. The comparative data in the Table 1 shows that the accuracy of the proposed method on the Segmentation 
mAP metric reaches 67.3, which is 3.0 points higher than that of Mask R-CNN; furthermore, the accuracy on the 
Bounding Box mAP metric reaches 65.3, which is 4.0 points higher than the Mask R-CNN method.

Table 2. Comparison of performance using different instance segmentation methods on the CRAG dataset

Model Segm
mAP

Bbox
mAP APS APm APl AP50 AP75

SOLO
YOLACT

Refinemask
PointRend

Mask R-CNN
Ours

27.1
45.9
60.7
57.9
58.3
61.5

0
47.1
61.5
58.8
60.7
64.2

0
0

30.5
33.2
27.2
31.4

11.2
33.4
49.2
47.2
46.7
48.9

31.8
50.1
64.4
61.3
61.9
65.6

55.6
73.5
85.4
84.1
84.6
86.8

24.3
49.2
68.5
65.6
66.6
69.7

By applying different segmentation methods to conduct image segmentation on the CRAG dataset, the per-
formance gaps of each segmentation method can be inferred through comparisons using various evaluation 
metrics. The comparative data in Table 2 shows that the accuracy of the proposed method on the Segmentation 
mAP metric reaches 61.5, which is 3.2 points higher than that of Mask R-CNN; furthermore, the accuracy on the 
Bounding Box mAP metric reaches 64.2, which is 3.5 points higher than the Mask R-CNN method.

Fig. 5 displays the segmentation testing on the GlaS dataset using the method employed in this paper and the 
baseline image segmentation method Mask R-CNN. A comparison of the visual results indicates a significant im-
provement in the segmentation method’s performance. Glandular cells with significant morphological variations 
can be accurately identified, attributed to the reduction of background interference by the attention mechanism. 
Firstly, compared to the Mask R-CNN segmentation method, our approach introduces a fine-grained fusion mod-
ule that integrates fine-grained discriminative features and coarse-grained diverse features, as shown in rows 1 
and 2 of the figure. Secondly, our method utilizes a dual-head attention module that combines spatial attention 
and pyramid attention, integrating spatial features from different scales to obtain more accurate and reliable spa-
tial information, reducing background interference, as illustrated in rows 3 and 4 of the figure.

Through the visual results of the experiments, it is visually evident that the improved image segmentation 
method proposed in this paper can achieve the best Segm APL metric, demonstrating excellent performance. This 
is because the glandular cell dataset exhibits significant variability in cell characteristics, with a majority being 
large-sized cells. Therefore, our method maps the highest resolution size to high-resolution feature maps, allow-
ing for the refinement of feature maps for large-sized cells with high-resolution information.
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Original True annotation Mask R-CNN Proposed method
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d

Fig. 5. Visual comparison of results between our method and Mask R-CNN on GlaS dataset

3.4   Ablation Experiment 

When conducting segmentation experiments with different methods to compare their segmentation performance, 
we also conducted both overall experiments and ablation experiments on the GlaS dataset to validate the perfor-
mance of each module of the segmentation model proposed in this paper. The results of the ablation experiments 
are presented in Table 3 for comparison. The data in Table 3 demonstrates that on the GlaS dataset, the integra-
tion of the fine-grained fusion module improved segmentation performance by 1.4. Subsequently, the incorpora-
tion of the dual-head attention mechanism further enhanced segmentation performance by 1.1, and finally, the in-
tegration of the Res2Net module resulted in an additional performance improvement of 1.7 on top of the existing 
baseline.

Table 3. Ablation experiments conducted in our network

Basic 
network

Granular 
fusion

Dual 
attention

Res2Net Bbox
mAP

Segm
mAP

√
√
√
√

√
√
√

√
√ √

61.2
61.8
62.4
65.4

63.2
64.6
65.7
67.4
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4   Conclusion

Given the scale complexity of colorectal gland images, the diverse morphological variations of cancer cells, and 
the existing issues in segmentation methods for colorectal gland cells, which require strong manual intervention 
and exhibit slightly lower accuracy, this paper proposes a more novel and effective spatial-pyramid dual-path 
attention module. Building upon this, a new gland cell instance segmentation network is constructed. This meth-
od enhances the Mask R-CNN framework by incorporating new functional modules and adopts a top-down ap-
proach for gland cell instance segmentation. The addition of these new modules allows the segmentation network 
to perceive higher-resolution mask-refined features. Through corresponding comparative experiments, it can be 
observed that the F1 score of this method has reached the best value of 0.9241, demonstrating superior perfor-
mance compared to commonly used methods for glandular cell instance segmentation. The results of the ablation 
experiments conducted on the publicly available GlaS dataset demonstrate the effectiveness of the added mod-
ules in glandular cell segmentation. Furthermore, the comparison with representative methods in the field further 
validates the competitiveness of the proposed approach in this paper.
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