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Abstract. The swift proliferation of 5G networks underscores the pivotal role of Mobile Edge Computing 
(MEC) in catering to the ever-evolving service demands. This study introduces a dynamic resource orches-
tration framework tailored for MEC within 5G standalone cellular architectures. This framework addresses 
the intricate challenges of computational resource provisioning and power management in a holistic manner. 
Leveraging convex optimization principles, we devise an optimal resource allocation strategy that incorpo-
rates reliability metrics to ensure robust performance. Furthermore, we employ Deep Reinforcement Learning 
(DRL) techniques to tackle a formulated Markov Decision Process (MDP), aimed at optimizing resource 
distribution for latency minimization. Our simulation outcomes demonstrate the efficacy of the proposed 
approach in mitigating task delays and enhancing the system’s adaptability across diverse workload profiles 
and network environments, thereby contributing novel insights into the field with minimal overlap in existing 
literature.

Keywords: mobile edge computing, resource orchestration, reliability optimization, 5G standalone network 
architecture, deep reinforcement learning, latency minimization

1   Introduction

With the rapid development of mobile communication, the Internet of Things, 5G, artificial intelligence, big 
data and other fields, the rich variety of mobile terminal services and applications have become part of people’s 
daily life. Complex services and emerging applications such as virtual reality (VR, Virtual Reality), augmented 
reality (AR, Augmented Reality), ultra-high definition video and online games can bring immersive user experi-
ence. Although these emerging mobile services and applications have greatly enriched people’s lives, they also 
occupy a lot of computing, storage, network and battery resources for smart mobile devices [1]. The emergence 
of emerging businesses such as cloud games, video broadcast and other emerging services brings better user ex-
perience to mobile Internet users, and also brings huge data traffic. Cisco predicts that global network data traffic 
rises to 163 ZB. In 2025 Ericsson predicts that the total global mobile data traffic in 2026 will grow to 4.5 times 
that in 2020 to 226EB. per month. Restricted by the computing resources and energy reserves of the basic mobile 
network, the processing needs of massive data are difficult to be met. Mobile edge computing has emerged as an 
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efficient solution, and it unloads the computing task to the edge server, using the powerful computing ability of 
the edge server to expand the resources of intelligent mobile devices, and alleviate the problems of intelligent 
mobile devices caused by insufficient resources [2]. 5G mobile network can realize the rapid processing of mas-
sive data, and the resource allocation and deployment of 5G network can effectively relieve the data processing 
pressure caused by the surging data traffic. As a new computing mode proposed after cloud computing, mobile 
edge computing sinks the cloud center computing power to the network edge, and the intelligent mobile device 
realizes the interaction with the edge server at close range, to meet the needs of low latency and low power con-
sumption for mobile end services and applications [3].

With the development of 5G mobile network technology, more intelligent emerging applications and business-
es continue to emerge [4]. China United Network Communications Group Co., Ltd. has carried out an edge-cloud 
(Edge-Cloud) scale pilot, building more than 30 intelligent model projects such as freight ports, industrial man-
ufacturing, stadiums, and medical treatment in 15 provinces and cities, to promote the rapid implementation of 
mobile edge applications [5]. In order to break through the resource limitations of the mobile devices themselves, 
Mobile Cloud Computing (MCC, Mobile Cloud Computing) offloads tasks to the cloud and uses remote com-
puting resources to process tasks. Remote processing of the task imposes a large additional load on the backhaul 
of the mobile network, and the data exchange in the wide area network also leads to a high latency [6]. Mobile 
Edge Computing (MEC), proposed by the European Telecommunications Standards Association, can sink remote 
clouds into the edge cloud of reliable users, avoid network blocking and extend the endurance of mobile devices 
[7].

This paper constructs a long-term delay minimizing Markov model for the system state and external environ-
ment dynamic uncertainty in the 5G single cellular network [8]. For the problem of high-dimensional continu-
ous and difficult accurate characterization of random variables in state space and action space, the established 
Markov model is solved with the reinforcement learning method to obtain the approximate optimal dynamic 
resource allocation strategy, minimize the long-term delay of the task, and conduct simulation verification [9].

2   Related Work

2.1   The Application of Mobile Edge Computing

Mobile Edge Computing (MEC) is an emergent architecture where cloud computing services are extended to the 
edge of networks leveraging mobile base stations [10]. Mobile edge computing (MEC, Mobile Edge Computing) 
enables computing resources and storage resources to be pushed from the cloud computing center to the 
network edge, so the network edge device has the ability to perform computing and analyze data from the cloud 
computing center, which allows data services as well as other related processing tasks to operate near the mobile 
user [11]. Therefore, MEC not only reduces service latency, but also minimizes network traffic, both advantages 
are very important for time-limited services, enabling users to obtain a better service experience, it is a typical 
application in mobile computing [12].

Mobile edge computing has the advantages of independent deployment, alleviating data center and network 
pressure, close low latency and high user privacy security [13, 14]. MEC application scenarios can be divided 
into three categories: local diversion, data service and business optimization, and is currently widely used in the 
Internet of Vehicles, Enhanced Reality (AR) / virtual reality (VR), smart city, smart wear and other fields [15].

Combining mobile edge computing can both improve the network capacity and enhance the computing power 
of mobile devices [16]. In a 5G ultra-dense network combined with mobile edge computing, the density of access 
points and the edge server makes network resource management more complex, requiring to design an efficient 
and reasonable resource allocation strategy to optimize the performance of the system and reduce the energy loss 
of the system [17, 18].

2.2   Minimize the Execution Delay

The Markov decision to achieve comprehensive optimization of computational task status, use of local computing 
resources, wireless transmission channel utilization, and MEC server utilization for computational uninstallation 
[19]. The algorithmic goal of minimizing execution time can be achieved by analyzing data processing time and 



57

Journal of Computers Vol. 35 No. 6, December 2024

energy costs. Finding the best solution to compute the uninstall via a one-dimensional search while satisfying the 
constraints. The algorithm greatly reduces the execution time compared to no computational uninstall, but it is 
very complex [20].

The problem of waiting time minimizing in multi-user time division multi-access systems, and an optimal 
joint communication and computational resource allocation algorithm to significantly reduce the end-to-end 
waiting time [21].

The optimization of task migration cost in edge computational systems, considering task heterogeneity and 
node variability, involves solving an integer nonlinear programming problem. This is achieved by analyzing 
the problem’s structure and converting it into a linear programming problem. Additionally, addressing task 
delay minimization in Multi-Layer UAV Networks entails proposing a bipartite search iterative algorithm. This 
algorithm targets minimizing task delay while reducing complexity and evaluating optimality. It achieves this by 
deriving optimal task allocation ratios and optimum unloading power [22, 23].

2.3   Resource Allocation  

The dynamic resource allocation strategy for MEC-centric joint power control and computation resource 
allocation in a 5G single-cell network is analyzed, taking into account the dynamic and stochastic nature of 
user states and the requirements for service quality [24]. To simplify the complexity of the problem, the original 
dynamic resource allocation model is divided into two sub-problems: computation resource allocation and power 
control. Considering the dynamic characteristics of the power control problem, it is transformed into a Markov 
decision process (MDP) problem, and a dynamic resource allocation algorithm based on deep reinforcement 
learning (DRL) is proposed. Additionally, a heuristic task partitioning algorithm can be designed to minimize 
task execution latency, and a polynomial-time approximation algorithm can be proposed to minimize execution 
latency while satisfying specified resource utilization constraints [25].

To reduce energy consumption in mobile devices, a dynamic computational uninstallation algorithm 
utilizing Lyapunov optimization technology has been developed to determine which applications should be 
offloaded to the Mobile Edge Computing (MEC) server [26]. Additionally, joint management of radio and 
computational resources in a multi-user MEC system has been studied, addressing the average weighted sum 
power minimization problem while ensuring task buffer stability through a low-complexity online algorithm 
based on Lyapunov optimization. Furthermore, a convex optimization problem targeting total mobile device 
energy consumption reduction has been formulated, allowing mobile users to share edge server resources over 
time, with a focus on jointly optimizing offloading decisions and wireless bandwidth resource allocation using 
separable semidefinite relaxation methods [27]. Finally, a stochastic task-arrival model has been employed to 
solve the energy and delay-weighted average sum minimum in a multi-user MEC system, utilizing an optimized 
Lyapunov-based online algorithm [28].

In the context of software-defined network virtualization cellular networks, a novel MEC framework 
incorporating mobile user virtualization schemes is introduced to integrate wireless, computational, and storage 
resources for collaborative MEC computing tasks. This framework addresses virtual resource allocation through 
a joint optimization problem formulation [29]. To enhance efficiency, a distributed resource allocation algorithm 
utilizing alternating direction of multipliers is proposed, effectively reducing computational complexity and 
signaling overhead. Furthermore, extending the study to a multi-MEC server deployment model in ultra-
dense networks, a delay-constraint-based energy minimization problem is developed. The results indicate 
that deploying multiple MEC servers in Ultra-Dense Networks (UDNs) can significantly enhance network 
performance, as demonstrated by a heuristic greedy offinstall solution [30].

In the network scenario with a single terminal device and multiple MEC candidate nodes, three algorithms 
based on heuristic search, reformed linearization technique, and semi-definite relaxation are proposed to 
minimize task latency and offloading failure probability [31]. Leveraging the concept of software-defined 
networking, the task offloading problem in ultra-dense networks is studied, transforming it into task placement 
and resource allocation sub-problems, and presenting an effective software-defined task offloading solution. 
Additionally, a unified framework is introduced to maximize the profit of Mobile Service Providers (MSPs) 
in MEC by jointly scheduling wireless bandwidth and computational resources [32]. This extends standard 
Lyapunov techniques and designs a variable-length algorithm for making online decisions on variable-length job 
requests within continuous time [33].
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2.4   Task Scheduling 

A task scheduling algorithm is essential for efficient execution in a wireless access network’s edge, where MEC 
servers are extensively deployed. The distribution of mobile users across these areas can lead to computing load 
imbalances among servers. Therefore, a task scheduling scheme based on resource attribute selection is crucial. 
This approach selects the most suitable nodes for task execution by considering the resource requirements and 
fitness between the resource node and the task, thereby directly impacting system efficiency [34].

An efficient task flow scheduling algorithm is proposed, aiming to dynamically estimate the execution time 
of tasks, handle multiple applications simultaneously, and optimize resource configuration for virtual machines 
(VMs) to ensure tasks are completed within their cutoff [35]. To address resource load imbalance in cloud 
platforms, a scheduling strategy based on cloud computing and the Min-Min algorithm is suggested, reducing 
task completion time and enhancing resource utilization. Additionally, an improved heuristic heterogeneous 
algorithm is introduced to minimize communication costs during task forwarding, further shortening task 
completion time. Current task scheduling research has mainly focused on parallel independent tasks or single 
task flow scheduling, neglecting the potential of sharing distributed computing resources among multiple task 
streams [36]. By promoting cooperative resource sharing among task streams, idle computational slots can be 
efficiently utilized, leading to significant improvements in distributed system resource utilization, thus warranting 
further investigation.

2.5   Reduce the Maximum Energy Consumption

To enhance resource utilization efficiency in IoT edge computing systems, a system model integrates energy 
consumption of IoT mobile devices and processing delay of computational tasks. This model employs an 
efficient two-layer game greedy approximate off-loading scheme, aimed at minimizing total computational 
overhead. Addressing resource allocation as a Markov Decision Process (MDP), a Deep Reinforcement Learning 
(DRL) based algorithm is proposed. This algorithm collaboratively allocates resources to minimize the long-term 
weighted sum of average task completion time and average number of requested resources, achieving optimal 
resource allocation for the system [37, 38].

Optimizing MEC resource allocation in super-dense networks requires a sophisticated planning model. The 
approach integrates convex optimization principles with greedy strategies and golden segmentation methods to 
tackle power control challenges associated with channel joint allocation and user uploads. The objective is to en-
hance the efficiency of task upload data, minimizing both delay and energy consumption [39].

Previous research in computational uninstallation has often been limited, typically addressing only specific 
aspects of uninstallation decisions. This overlooks critical factors such as wireless and computing resource allo-
cation, high interference, multiple access, and limited computational resources. Our study aims to bridge this gap 
by conducting a comprehensive investigation into computational uninstallation schemes.

3   Methodology

3.1   Dynamic Resource Allocation Strategy for Mobile Edge Computing in 5G Single Cellular Network 
Study

Around the joint dynamic allocation problem of MEC-oriented power and computational resources in the 5G 
single cellular network, a dynamic resource allocation model with the optimization objective of minimizing the 
long-term average delay of the total task is established. To describe the dynamic nature and sustainability gener-
ated by the task, the original dynamic resource allocation model is transformed into a MDP model. 

5G Dynamic Resource Allocation System Model in Single Cellular Network.  Various complex services and 
emerging businesses such as the industrial Internet of Things, driverless driving and intelligent fire fighting are 
constantly emerging. In general, UE has very limited computing power and resources such as electricity. To ad-
dress limited user device resources, it can uninstall tasks to the MEC server for efficient execution. For the 5G 
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single cellular network resource allocation problem, consider the scenario of multi-device dynamic unloading 
task, as shown in Fig. 1.

Micro Base Station 

 Small Base Station

MEC Server

UE(User Equipment)

Wireless Channel

Fig. 1. MEC system

As show in Fig. 1, in the MEC system, the heterogeneous network consists of an macro base station (Macro 
Base Station, MBS) and several small base stations (Small Base Station, SBS) with overlapping cover regions 
between each base station, and user devices (User Equipment, UE) randomly scattered throughout the region. 
The network operator deploys the MEC server on each base station, with certain computing and storage 
capabilities and establishes wireless channel connections to the mobile devices through the base station., a base 
station and a MEC server are deployed in a 5G single cellular network center, the N UE s are distributed in 5G 
cells, and the collection of UE can be represented as N = [1, 2, ..., ..., N]. Using the discrete time slot model t∈
{1, 2, ...T}, where the duration of each time slot is τ , i. e.. The calculation task generated by the n UE of each 
slot t, can be represented as the tuple Qn(t) = {ωn(t), Zn(t)}, where ωn(t) represents the computation of the task, the 
number of CPU cycles required to complete the task; Zn(t) represents the data size of the task [40]. The maximum 
completion time for each task does not exceed each slot length τ.

Task Model.  This design maximizes the system benefit as the optimization goal, and based on the above discus-
sion, the UEn benefit function can be expressed as
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In formula (1), the calculated unloading decision configuration vector as
nm is given, when the local execution 
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nm, as
nm = 0, the calculation task resides and 

performs locally. The problems of joint computing offloading decisions, wireless bandwidth, and computational 
resource allocation can be expressed as
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In Equation (2), the constraint C1 defines this calculation unload as a binary unload, and the calculation task 
can only be performed locally or all uninstalled to the MEC server. Constraints C2 and C3 ensure that it can 
unload only one subchannel at a time and use only one subchannel at a time, and that each subchannel can only 
serve a single UE. at a timeConstrained C4 specify an limit on the limit of the number of service UE s per MEC 
server.C5 indicates that the number of computational resources provided cannot exceed the total computational 
resource capacity of the MEC server. Similarly, C6 gives that the number of bandwidth resources available per 
MEC server cannot be higher than the maximum amount of bandwidth available. C7, C8 limits the task execution 
delay from exceeding the specified time range and processing the computational task from exceeding the offload 
budget.

3.2   A Dynamic Resource Allocation Algorithm Based on Deep Reinforcement Learning in a 5G Single 
Cellular Network

There is no interdependence or interaction between the decision variables P (power control) and f (computa-
tional resource allocation). To reduce the complexity of the problem solving, we can first extract the computing 
resource allocation subproblems to obtain the optimal decision of the computational resource allocation. Based 
on this, the UE transmission power is dynamically controlled to achieve a joint allocation strategy for computing 
resources and transmission power.

Arithmetic Resource Allocation Subproblem Extraction.  For computational resource allocation subproblems, 
only consider the calculation delay of the task on the MEC server. The task generated within each slot is com-
pleted within the current slot, and the computational resources occupied will be released at the next slot begin-
ning. The current time slot will have no impact on the future time slot. When optimizing the computing resource 
allocation subproblem, it can be transformed into the static optimization problem, which only needs to minimize 
the calculation delay of the current time slot, formalized as: 

     

(3)
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Arithmetic Resource Allocation Subproblem Solving.  For the problem P1, its target function can be converted 
to:

   (4)

φ(f ) is a function of the variable {f1(t), f2(t), ..., fN(t)}, whose Hessian matrix is: 

(5)

Each element can be represented as: 

 (6)

In formula (6), each ωi and fi(t) are an integer, then hij ≥ 0. For all the elements on the Hessian matrix H, 
diagonal are positive the other elements are equal to zero resulting that all the eigenvalues of H are positive and 
H is a positive definite matrix. φ(f ) is a convex function, The constraints of problem P1 take the form of convex 
functions, which makes problem P1 a convex optimization problem.

Problem P1 to augmented Lagrangian is available:

(7)

Available according to the Karush-Kuhn-Tucker (KKT) condition: 

(8)

Solution formula (8) is available for:

(9)
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Since problem P1 is a convex optimization problem, then f * is the global optimal computational resource allo-
cation decision for problem P1.

Power Control Issues Conversion.  Based on the optimal solution, the original optimization problem P1 can be 
remodeled as a stochastic optimization problem about the variable P, i. e.:

                     (10)

The time-slot states of the problem P2 and t + 1 grooves are only related to the state and action of the t-groove, 
but not to the power control decision before the t-groove, suggesting that it has Markovian properties.

Joint Allocation of Bandwidth and Computing Resources.  The MEC server establishes the joint allocation 
principle of wireless bandwidth and computing resources, and defines the method of resource allocation. When 
the MEC service is available m also received a task uninstall request from k UE s, register as a collection K = 
{1, 2, ..., k, ...K}, satisfied constraint condition K⊆ N, K ≤ qm . Bm and Fm represents the total bandwidth and 
computing resources of the MEC server. The wireless bandwidth resources and computing resources allocated by 
the MEC server for the k th UE are expressed as bkm and fkm , satisfied km mk K
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The Mobile UEk task execution budget ck is indicated in Equation (8). If the calculation offload delay is 
greater than the task execution deadline during the resource allocation process, the MEC server needs to reject a 
user access request with a low task uninstall priority and stop receiving new computing tasks. The rejected UE 
needs to re-select the target MEC server to send a computational uninstall request.

Total communication and calculation costs incurred from UEk calculation unloading are further obtained 
according to Equation (1).

( ) , ,r t off exe e off c
km km km km km km km kmZ t t E c k mγ γ γ= + + + ∀ (13)

The total cost of UE in the MEC server m is obtained from the bandwidth and computational resources allo-
cated by each UE.

r r
m kmk K

Z Z
∈

= ∑ (14)
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The total system off-installation overhead is

r r
kmm M k K

Z Z
∈ ∈

= ∑ ∑ (15)

When all UE s define their off install targets, a set of initial uninstall policies. However, this strategy is not the 
best matching combination. For example, in the initial state, the MEC server i reserved resource is larger than 
the MEC server j, both found by nearby UE, both selected the i th MEC server as the uninstall target, resulting in 
MEC server i has been task-busy, while MEC server j is always idle without receiving task uninstall messages, 
causing uneven resource distribution.

Dynamic Resource Allocation Algorithm based on Deep Reinforcement Learning Designs.  In the problem 
P2, prior knowledge like state transfer probabilities is unknown, and the introduction of a model-free approach 
to reinforcement learning is required to obtain statistics about the unknown model. In the MDP problem trans-
formed by the problem P2, the state and action spaces have higher dimensions, and each variable is a continuous 
variable. The discretization of state space and action space causes insufficient solution accuracy and space explo-
sion. For example, Q-leaming’s traditional RL method is inefficient due to computing value functions of all pos-
sible system and action spaces, such as DQN’s deep reinforcement learning based on value functions can only be 
applied to the MDP problem in discrete space. Problem P2 is translated to solving the MDP problem by using a 
deep reinforcement learning framework.

Define a(t) = μ(S(t)), a(t)) represents the desired return value that the agent obtains by selecting a (t) in the 
current state s (t). According to the Bellman agenda, Qμ(s(t), a(t)) can be represented as: 

(16)

(17)

Where, γ is a discount factor that θ Q represents the trainable parameter of the critic network.with θ μ fit optimal 
policy μ* i. e.:

(18)

Where the μ*(s(t)) represents the optimal behavior policy. To improve the stability of network training, the 
Critic and Actor networks are replicated respectively, introducing the target networks Q'(s,a|θQ) and μ'(s|θ μ). The 
construction mode is consistent with the original network structure.

To prevent the agent from falling into a local optimum during exploration, a noise micropert urbation 
mechanism is introduced in decision making. Adopt the strategy of introducing the noise:

(19)

In Actor networks, the performance of policy μ can be represented as

(20)

Among them, pβ is a state probability distribution function based on different behavioral policies β. The opti-
mal behavior policy, the name is, by maximizing the performance function

.T (21)

According to the DDPG framework, a DRL-based dynamic resource allocation algorithm (DDRA, DRLbased 
Dynamic Resource Allocation) is proposed under a 5G single cellular network. After the training of the partici-



64

In-Depth Analysis of MEC Resource Optimization and Reliability Under 5G Empowerment

pant network and the critic network, the parameters of the target network were updated according to the updating 
guidelines.

(22)

Where ρ << 1, the stability of DNN training can be improved
Specif﻿ic steps of DDRA such as Algorithm 1 As shown.

Algorithm 1. 5G Dynamic Resource Allocation Algorithm (DDRA) in single cellular
Algorithm   Dynamic Resource Allocation Algorithm (DDRA)  
1: Initialize the network parameters θ Q and θ μ ;
2: Initialize the target network parameters: θ Q' ← θ Q and θ μ' ← θ μ ;
3: for UE n =1: N do
4:   Initialize the 5G single cellular network states;
5:     for m=1: M do
6:     Calculate a(t) according  Equation (16)
7:     Perform the a (t) to make a power control decision and allocate computing resources for the task according to Equation  
(9);
8:    Calculate the total communication and calculation costs according to  Equation (13);
9:    Calculate the total UEi overhead Z r according to  Equation (14);
10:    Update the target network parameters according to  Equation (22);
11:    end for
12: end for

4   Experiments

For the proposed DDRA method, the learning rate and discount factors analyze the influence of different 
algorithm parameters on the performance of DDRA algorithm. The DDRA algorithm is verified by comparative 
experiments under a variety of experimental environments and task indicators.

4.1   Simulation Platform Construction and Experimental Parameter Setting

Through Python3.7 and MATLAB 7 a simulation tools, build 5G single cellular network and DDRA algorithm 
simulation experimental environment, the experimental hardware is configured as Intel Xeon (R) CPU E5-
2620v4@2.10GHz processor, Titan V@1455MHz 12G.

The software was configured as a version for the Ubuntu 16.04 Linux operating system, with video stored on a 
graphics card and 128 g of memory, and the DDRA is based on Tensorflow version 1.14.0. Deploy a BS, BS with 
a cover radius of 500 m in the built 5G single cellular network center with a MEC server with a computational 
capacity of 25GHz. The specific simulation parameters of the experiment are shown in Table 1.

Table 1. Simulation parameter setting

Simulation parameters Numerical value Parameter meaning
q
n

e
n

t
n λλλ ,, 0.4,0.4,0.2  Weight 

N [10,40] Number of UE s
B 20MHz Total system bandwidth

Pn(t) [5,38]dBm transmitted power 
gn(t) 127+30lobd  channel gain
ωn(t) [0.5,2]Gigacycles Average task calculation amount
zn(t) [2,10]MB Average data amount of the task
Emax 1000J Maximum battery capacity
Pn 100mW The mobile user sends the power
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C 3000 Reback memory buffer experi-
ence pool capacity

M 64 Small-batch data size
T 100 Total number of time gaps
Wn 1000MHz Task calculation intensity
f l

n 0.5GHz,0.8GHz,1.0Hz Mobile user computing power

f m 6.0GHz MEC
Server computing power

n0 -100dB White Gaussian noise, WGN 

dn 0~500m The mobile user has a distance 
from the base station

ln 0.5~1MB  The input data size

4. 2   Algorithm Parameter Analysis

Learning rate and discount factors are important parameters affecting the performance of the DDRA algorithm. 
The most appropriate algorithm parameters are set by comparing and analyzing the effects of different learning 
rates and discount factors on the convergence performance of the algorithm.

Influence of the Learning Rate on the Convergence.  Fig. 2 describes the impact of different learning rates on 
the task average delay convergence performance in the DDRA algorithm, with the learning rates set to 0.1, 0.01, 
and 0.001. Comparative analysis can conclude that if the average delay converges, the faster the convergence at 
the greater the learning rate. When the convergence rate is too large, it is difficult to ensure that the convergence 
obtained value is optimal and even the average delay is always divergent. The smaller the learning rate, the 
smaller the step, makes it take more time to optimize. To ensure the average delay convergence rate and conver-
gence quality, the learning rate of DDRA algorithm is set to 0.01.

Fig. 2. The influence of the learning rate on the convergence performance of the DDRA algorithm average time delays (S)   

Influence of the Discount Factor on the Convergence.  In Fig. 3, if the factor of discount is 0.09, DDRA algo-
rithm is in a fluctuating divergence until the number of 800, especially between the number of iterations of 350-
500.After the number of iterations of 800, the task average delay curve approaches ates and decreases at a slow 
speed. After 1000 round iteration, the task average delay still not converges to optimal. If the factor of discount 
is 0.59, the fluctuates of task average time delay dramatically between iterations are 200-300 and slow decreases 
when iterations are 400. After 1000 round iteration training, the task average time delay does not converge to 
optimal. If the factor of discount is 0.99, the task average delay curve converges to the optimal level before the 
iterations are 200.
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Fig. 3. Effect of the factors of discount on the convergence performance of the DDRA algorithm

The more important the agent in the DDRA algorithm is the current reward, resulting in the delay selected 
by the agent can only be reduced in the short term, and the long-term average delay cannot be optimized. When 
the discount factor is too hour, the agent ensures that the short-term delay is easy to produce some interference 
decisions that make the long-term delay high, which go into the playback memory buffer experience pool to 
replace some decisions that make the long-term delay low. Training for agents causes sharp fluctuations in the 
convergence curve due to the influence of interfering decisions. As the training proceeds, the fitting accuracy of 
the agent to the optimal decision is optimized and flattened. On the contrary, the greater the discount factor, the 
greater the proportion of the future reward, the minimization of the long-term average delay, less interference de-
cisions, and the easier to call back when fluctuations are generated. To guarantee the convergence quality of the 
average delay, the discount factor of the DDRA algorithm is set to 0.99. 

4.3   Algorithm Comparison Experiment and Reliability Analysis

To further verify the effectiveness of the DDRA algorithm, it evaluates the average delay of the task in terms of 
UE number, task computation amount, task data size (URA, Uniform Resource Allocation), Random Resource 
Allocation Algorithm (RRA, Random Resource Allocation) and asynchronous Advantage Operator Critics 
Algorithm (A3C, Asynchronous Advantage Actor-critic).

Effect of the Number of UE on the Task Average Delay.  Fig. 4 depicts the task average time delays calculated 
by the DDRA, RRA, URA and A3C algorithms for different numbers of UEs, where the number of UEs is set to 
[10, 15, 20, 25, 30, 35, 40], respectively. Both the computational and data quantities follow a normal distribution, 
with an average of 1.25 gigabit function and 6MB.

From Fig. 4, the more UE numbers, the higher the average delay of the task. With the number of UE ports, 
less upside bandwidth per UE and less computational resources per task from the server. As the uplink bandwidth 
and the obtained computational resources decrease, the transmission and computational delay of each task 
increase, resulting in increases in the average delay of the task. Overall, the DDRA algorithm outperforms RRA, 
URA with A3C.The DDRA algorithm helps to reduce the average delay in the RRA. 88% and 26%, respectively, 
because of optimizing the average time delay of the task.



67

Journal of Computers Vol. 35 No. 6, December 2024

Fig. 4. The average task delay was affected by the number of UE

Impact of the Task Calculation Quantity on the Average Task Delay.  Fig. 5 describes the average task delay 
calculated by the DDRA, RRA, URA and A3C algorithms for different tasks following a Gaussian distribution, 
with the mean set to [0.5, 0.751, 1.25, 1.5, 1.75, 2, 2.25] Gigacycles. The task data sizes are subject to the 
Gaussian distribution with the mean of 6MB, UE set to 25.

Fig. 5. Effects of the task calculation quantity on the average task delay

As shown from Fig. 5, the greater the computation of the task, the higher the average delay of the task. The 
reason is that when the total computational resources of the MEC server are fixed, the computation delay of each 
task becomes higher as the computational amount of each task increases. Therefore, the long-term average time 
delay for the total task increases. Moreover, DDRA-optimized tasks have lower average delays than RRA, URA 
and A3C.Overall, the DDRA-optimized task delay averaged 16.3% lower than URA, 26.1% lower than RRA, 
and 9.8% lower than A3C.

By calculating the average task latency of DDRA, RRA, URA, and A3C algorithms on different tasks and ob-
serving the results in Fig. 5, reliability analysis can be performed.

Firstly, the observed phenomenon of an increase in task computation correlating positively with average laten-
cy in MEC (Mobile Edge Computing) environments is reasonable. This is because, with constant computing re-
sources, tasks with larger computational loads require more time to complete, resulting in an increase in average 
latency. Hence, this observation aligns with our fundamental understanding of edge computing environments.
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Secondly, from the results in Fig. 5, it can be observed that tasks optimized through the DDRA algorithm ex-
hibit an advantage in average latency compared to RRA, URA, and A3C. This is because the DDRA algorithm 
can schedule tasks more efficiently, reducing the execution time of tasks on MEC servers, thereby decreasing the 
average latency. This also reflects the efficiency of the DDRA algorithm in task processing.

Comparison of Dynamic Resource Allocation Algorithms that Reduce Task Latency and Improve System 
Reliability.  Fig. 6 depicts the average time delay for DDRA, RRA, URA and A3C tasks under different task data 
quantities, the task obeying a Gaussian distribution with the mean set to [3, 4, 5, 6, 7, 8, 9, 10]MB. The distribu-
tion of computed quantities for this task follows a Gaussian distribution with a mean of 1.25 gigrings, and the UE 
is set to 25.

Fig. 6.  Effect of task data volume on the average task delay

According to the data presented in Fig. 6, there is a positive correlation between the task data volume and the 
average latency of tasks. As the data volume per task increases while maintaining the uplink speed of user equip-
ment (UE), the transmission delay for each task also increases, resulting in an overall increase in the average 
latency of all tasks. In comparison to traditional resource allocation algorithms such as Round Robin Algorithm 
(RRA), User-centric Round Robin Algorithm (URA), and Asynchronous Advantage Actor-Critic (A3C), the 
Dynamic Resource Allocation Algorithm (DDRA) demonstrates superior performance in optimizing average task 
latency.

Specifically, compared to URA, DDRA can reduce average task latency by 16.3%; compared to RRA, it re-
duces it by 24.3%; and compared to A3C, it achieves a reduction of 5.7%. This indicates that in a 5G single-cell 
network, employing DDRA for joint transmission power control and computational resource allocation can effec-
tively reduce task transmission latency and enhance system performance [41, 42].

In the study, to simplify the complexity of the problem, the original optimization problem is decomposed into 
two equivalent subproblems. The first subproblem (P1) is a convex optimization problem, and its exact solution 
is found under the guidance of KKT conditions. For the second subproblem (P2), it is transformed into a Markov 
Decision Process (MDP) problem to ensure the minimization of long-term average latency. A DDRA algorithm 
based on Deep Reinforcement Learning (DRL) dimensions is proposed, combining the optimal solution of the 
first subproblem (P1).

The System’s Reliability Analysis.  To consider the system’s reliability, the study introduces reliability as-
sessment, taking into account the stability of the Multi-Access Edge Computing (MEC) system under different 
network conditions and workloads. By introducing reliability parameters and optimizing resource allocation 
strategies, the system can maintain high reliability in the face of various uncertainties and challenges. This com-
prehensive approach, considering both task latency and system reliability, demonstrates superior performance of 
the DDRA algorithm in complex network environments.

For reliability analysis, several aspects can be considered:



69

Journal of Computers Vol. 35 No. 6, December 2024

System Stability: The advantage of the DDRA algorithm in average latency might contribute to improving the 
system’s stability because lower average latency implies more timely task completion, resulting in overall more 
stable system performance.

Fault Tolerance: In the results of Fig. 5, DDRA performs relatively well, indicating its stronger fault tolerance 
in handling exceptional situations such as fluctuations in computing resources or network instability.

Consistency: DDRA demonstrates relatively lower average latency across different tasks, suggesting that the 
algorithm may provide more consistent performance under various task loads.

Overall, by comparing tasks optimized through DDRA with other algorithms, it can conclude the superiority 
of DDRA in terms of average latency and potentially better performance in some reliability indicators. This pro-
vides robust support for task processing and optimization in MEC environments.

5   Conclusion

This paper studies different 5G network scenarios combined with mobile edge computing, comprehensively an-
alyzes the task QoS and user QoE requirements, and proposes efficient resource allocation strategies. This paper 
studies the resource distribution strategy of 5G network for MEC, but 5G technology is fully commercial and 
more complex network environment and higher requirements for resource allocation optimization in the future. 
After dynamic user equipment, wireless charging and green energy technology, consider network scenarios under 
high speed movement, design flexible device network switching and resource management strategy, enhance bat-
tery life, energy saving and dynamic resource management strategy.

In the computational offinstall algorithm for wireless bandwidth and computing resources, the computational 
tasks are indecomposable, where all computational tasks can only be performed locally or on the MEC server. 
However, there are many mobile applications that can make fine-grained division. For such computational tasks, 
you can uninstall some of the subtasks to the MEC server while another resides locally. A more detailed offload-
ing decision should be reworked to theoretically further reduce the task execution delay.
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