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Abstract. Traditional image fusion algorithms often struggle with slow processing speeds and suboptimal
results, particularly when handling non-planar images. In this paper, we present a novel deep learning-based
approach for panoramic image fusion. We begin by detailing our dataset construction and preprocessing tech-
niques. To enhance the model’s capability with non-planar images, we apply the Thin Plate Spline (TPS) de-
formation algorithm, allowing effective panoramic fusion across complex image structures. The model archi-
tecture is based on a convolutional neural network (CNN) framework, integrated with up- and down-sampling
modules to accurately and efficiently capture image features, resulting in higher-quality fusion outcomes.
Experimental results demonstrate that this deep learning approach achieves faster fusion speeds and higher
quality compared to traditional methods.
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1 Introduction

In daily life, camera limitations often prevent capturing an entire scene due to restricted focal length [1]. While
adjusting the focal length or reducing the frame size can address this, such changes often compromise image
resolution. Panoramic image fusion technology offers a solution by merging multiple overlapping images into a
single, high-resolution panoramic view, providing a broader perspective without losing clarity. This approach is
especially beneficial for low-pixel cameras, making high-quality, wide-angle images more accessible and cost-ef-
fective for everyday users. However, achieving the desired image resolution remains challenging, particularly
due to equipment and budget constraints. Finding ways to enhance image resolution affordably could significant-
ly benefit fields like medicine, biology, and artificial intelligence, where high-quality imaging is crucial.

Image fusion technology has garnered substantial interest globally, with ongoing research aiming to improve
efficiency and conserve computational resources. Broadly, image fusion techniques are divided into traditional
and deep learning-driven approaches. Traditional methods include feature-based [2], grayscale-based, mod-
el-based [3], and transform domain-based methods [4-6]. Each approach has distinct strengths, and researchers
are increasingly exploring deep learning to achieve faster, higher-quality fusion results with greater adaptability.

With recent advancements in deep learning, image fusion techniques based on deep learning have seen notable
progress and refinement. However, these methods require extensive datasets for training, which can be difficult to
gather in some applications. Furthermore, fusion results are highly dependent on the training data quality, making
it essential to develop a more efficient, adaptable, and versatile deep learning-driven fusion technique. This paper
is built upon addressing these challenges.

In this paper, we apply deep learning to panoramic image fusion, demonstrating through experiments that this
approach surpasses traditional fusion methods in terms of feature extraction, computational efficiency, and fusion
quality. We address three primary objectives. First, it investigates the implementation and performance of the tra-
ditional SIFT algorithm in image fusion. Second, it introduces a deep learning-based approach for image fusion,
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presenting both its implementation and optimization methods. This deep learning method offers distinct advan-
tages over traditional techniques: it automatically extracts image features, leading to more precise alignment and
fusion; it can handle complex scenes and dynamic elements to create seamless transitions; and it includes a visu-
alization component, providing an interactive interface for user-friendly application.

2 Related Works

Feature extraction is essential in image fusion, as it directly impacts the quality of the final fused image. The
main goal is to identify and match shared features across multiple images, allowing for precise alignment and a
cohesive fusion result. In the following subsections, we review key methods integral to our approach: the SIFT
algorithm, TPS transformation, neural networks, and convolutional neural networks.

2.1 SIFT Algorithm

The Scale-Invariant Feature Transform (SIFT) algorithm, introduced by David G. Lowe in 1999 and refined in
2004 [7, 8], is a widely used feature extraction and characterization method in computer vision. SIFT identifies
“keypoints” within an image and generates descriptors that remain invariant to changes in scale, rotation, and
lighting. This robustness makes SIFT particularly valuable for tasks such as image matching and object recogni-
tion, where accurate alignment and feature consistency are essential.

2.2 TPS Transformation
The Thin Plate Spline (TPS) function [9] is a widely used interpolation method in image alignment, particularly
effective for image matching tasks due to its two-dimensional interpolation approach. In the alignment process, a

set of matching points is first identified across two images. The TPS algorithm is then applied to map these points
to their corresponding positions in the other image, enabling precise and smooth alignment.
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(a) The control point p before transformation; (b) The corresponding point f[p] after transformation and the resulting defor-
mation of the entire plane due to the transformation, showing positional changes of surrounding points.

Fig. 1. The basic process of the TPS interpolation technique

Fig. 1 illustrates the fundamental process of the TPS interpolation technique. In Fig. 1(a), point p represents
the control point’s position before transformation, while point f[p] in Fig. 1(b) shows its position after transfor-
mation. This transformation deforms the entire plane around the control point. As shown in Fig. 1(b), the TPS
technique aims to calculate the positional change of each point on the surface resulting from this transformation.
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2.3 Neural Network

A neural network is an artificial computational model designed to emulate the connections between biological
neurons. It is widely used in machine learning and artificial intelligence. By processing large amounts of input
data, neural networks can extract complex features and use these to perform specific tasks, generating the desired
output. The basic architecture of a neural network is illustrated in Fig. 2.
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Fig. 2. Basic architecture of a neural network

2.4 Convolutional Neural Network

Convolutional neural networks (CNNs) [10] differ from fully connected networks by employing localized con-
nections through convolutional and pooling layers, which reduces redundancy and decreases computational de-
mands. In CNNs, neurons connect only to neighboring regions, enabling efficient processing of high-dimensional
data. A standard CNN structure includes an input layer, an output layer, and multiple hidden layers with alternat-
ing convolutional and pooling functions. This layered configuration allows CNNs to effectively capture and learn
features from images, making them highly suitable for tasks like classification, recognition, and the processing of
complex data.

3 Methodology

In this section, we present the techniques employed to achieve panoramic image fusion using a deep learning
approach. Our methodology is organized into three primary stages: first, dataset construction, where we outline
the selection criteria and organization of images essential for effective model training and testing. We then move
to data preprocessing, detailing the steps taken to optimize the dataset for model training, including resizing, nor-
malization, and data augmentation to improve consistency and model generalization. Finally, we introduce our
Deep Learning Model-Based Panoramic Image Fusion Algorithm, covering the network architecture and training
strategies designed to precisely align and fuse images with overlapping regions. These combined steps provide a
structured approach to creating high-quality panoramic image fusion.

3.1 Dataset Construction

As this study employs deep learning, which relies on extensive data, we use a publicly available dataset from the
web. The dataset is split into two parts: a training set and a test set. The training set consists of over 20,000 im-
ages organized into two folders, while the test set includes around 2,000 images, also organized into two folders.
All images are RGB with overlapping regions, allowing for effective feature learning and fusion. Sample images
from the dataset are shown in Fig. 3 and Fig. 4.
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Fig. 4. Indoor data

3.2 Data Preprocessing

Once the dataset is constructed, data preprocessing is essential to enhance the quality of the subsequent deep
learning process. Testing has shown that image size and channel count significantly influence deep learning effi-
ciency, so proper preparation of the images is crucial before fusion.

Since deep learning requires intensive training, using large images may slow down the training process, and
insufficient computational power can prevent the program from running. Conversely, images that are too small
may result in reduced clarity in the final output. To address this, we employ the resize function from the PIL li-
brary to resize and compress images, specifying (width, height) along with the Image. ANTIALIAS parameter.
Setting Image. ANTIALIAS helps retain image quality during compression.

During preprocessing, the PIL library’s size property is used to retrieve the image’s height, width, and channel
count. RGB images, typically with pixel values ranging from 0-255, are normalized to a 0—1 range for improved
processing.

After compression, the images maintain high fidelity to the originals, achieving the intended processing quali-
ty and enabling efficient deep learning fusion.

3.3 Deep Learning Model Based Panoramic Image Fusion Algorithm
The deep learning-based panoramic image fusion algorithm consists of two primary stages: image deformation
and image fusion. In the first stage, the TPS transformation is applied to deform the image. In the second stage,

an enhanced convolutional neural network is used to fuse the deformed images, creating a seamless panoramic
result.
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TPS Image Deformation. Traditional image fusion techniques often rely on feature extraction algorithms such
as SIFT, Harris, and SURF, which work well for images with distinct features and simple geometric composi-
tions. For non-planar scenes, traditional fusion can utilize grid-based models; however, this approach does not
suit deep learning-based image fusion. To address this, we apply the Thin Plate Spline (TPS) transformation to
the images.

TPS, widely used in applications like facial alignment and expression transformation, is a powerful interpola-
tion method that enables image deformation by converting coordinates. This transformation relies on correspond-
ing keypoints, where one set of keypoints denotes positions in the original image, and another set represents po-
sitions in the target template. By solving for TPS parameters, we create a mapping function that aligns each pixel
in the original image with its corresponding position in the target template.

This process resembles deforming a flexible plate and projecting it onto the target image, thereby transforming
the original image to match the desired structure. Two smooth functions are used here for 2D image transforma-
tion:

foley) = a +axta,y+IN; = wU(|@. ) - (. 9))).- (1)

() =a+a.x+a,y+IN; =IwU(|(x;,y,) = (x, Y)|)-- )

In brief, the coefficients a,, a,, and a, establish a plane that aligns with control points (x,, y;) nearest to the tar-
get coordinates x’ or )/, while w; indicates the influence or weight of each control point. The kernel function, (||(x;,
v)—Ce, »IDUI((x;, ;) U—(x, »))||) measures the distance between the target point and each control point, with the
thin plate kernel serving as a typical example. This visualization shows how proximity to a control point (kernel
center) impacts each point’s transformation effect. After the TPS transformation is applied, the image is warped
from its original state (Fig. 5) to the target configuration (Fig. 6).

Fig. 6. Target image after applying the TPS transformation, illustrating the deformation achieved through control point align-
ment
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Convolutional Neural Network Image Fusion. The image fusion algorithm is based on a convolutional neural
network framework with two primary components: Netl and Net2, each further divided into two sub-modules.
The detailed architecture is illustrated in Fig. 7 to Fig. 10.

self.regressietl_partl = nn.Sequential(
nn.Conv2d(2, 64, Kernel_size=3, padding=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(64, &4, kernel_size=3, padding=1, bias=False),
nn.ReLU{inplace=True),
nn.MaxPool2d(2, 2),

nn.Conv2d(64, 128, Kernel_size=3, padding=1, bias=False),
nn.ReLU(inplace=True),

nn.Conv2d(128, 128, Kernel_size=3, padding=1, bias=False),
nn.ReLU(inplace=True),

nn.MaxPool2d(2, 2),

nn.Conv2d(128, 256, kernel_sizes3, padding=1, bias=False),
nn.ReLU(inplace=True),

nn.Conv2d(254, 256, kernel_size=3, padding=1, bias=False),
nn.ReLU{inplace=True),

nn.MaxPool2d(2, 2)

Fig. 7. Partl of Netl

self.regressNetl_part2 = nn.Sequential(
nn.Linear(in_features=4096, out_features=4096, bias=True),
nn.ReLU(inplace=True),

nn.Linear(in_features=4096, out_features=1024, bias=True),
nn.ReLU(inplace=True),

nn.Linear(in_features=1024, out_features=8, bias=True)

Fig. 8. Part2 of Netl
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Fig. 9. Part] of Net2
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self.regressNet2_part2 = nn.Sequentiall(
nn.Linear(in_features=8192, out_features=4096, hias=True),

nn.ReLU(inplace=True),

nn.Linear(in_features=4096, out_features=2048, bias=True),
nn.ReLU(inplace=True),

=1

n.Linear(in_features=2048, out_features=(grid_w + 1) * (grid_h + 1) * 2, bias=True)

Fig. 10. Part2 of Net2

The fusion algorithm also defines three core modules: the downsampling module, which gradually reduces the
feature map size; the upsampling module, which progressively restores the feature map size; and the main net-
work module, which initializes the downsampling and upsampling modules and connects them through a forward
propagation process.

class DownBlock(nn.Module):
def __init__(self, inchannels, outchannels, dilation, pool=True):
super(DownBlock, self).__init__()
bk = []
if paol:
blk.append(nn.MaxPool2d(kernel_size=2, stride=2))
blk.append(nn.Conv2d(inchannels, outchannels, kernel_size=3, padding=1, dilation=dilation))
blk.append(nn.ReLU(inplace=True))
blk.append(nn.Conv2d(outchannels, outchannels, kernel_size=3, padding=1, dilation=dilation))
blk.append(nn.ReLU(inplace=True))
self.layer = nn.Sequential(*blk)

for m in self.modules():
if isinstance(n, nn.Conv2d) |
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fil11_(1)
m.bias.data.zero_()

def forward(self, x):
return self.layer(x)

Fig. 11. Downsampling module

As shown in Fig. 11, this module gradually reduces the spatial resolution of the feature map using convolu-
tional and pooling layers, which increases the number of channels as the resolution decreases.

The upsampling module in Fig. 12 employs nearest neighbor interpolation and 1x1 convolution to increase the
spatial resolution of the feature map, while additional convolutional layers further refine feature extraction. Fig.
13 illustrates the main network module, which initializes both the upsampling and downsampling modules.
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class UpBlock(nn.Module):

def

Visualization Interface. To enhance user convenience, a visual interface was developed, simplifying the oper-
ation process. As shown in Fig. 14, the overall workflow is as follows: the user selects the images for fusion and
clicks the “Upload” button, uploading them to the system. Once the upload is successful, the user clicks “Generate
Perspective View,” prompting the system to begin calculations. After completion, the system notifies the user,

__init__(self, inchannels, outchannels, dilation):
super(UpBlock, self).__init__()
# self.convt = nn.ConvTranspose2d(inchannels, outchannels, kernel_size=2, stride=2)
self.halfChanelConv = nn.Sequentiall
nn.Conv2d(inchannels, outchannels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)

self.conv = nn.Sequential(

=1

n.Conv2d(inchannels, outchannels, kernel_size=3, padding=1, dilation=dilation),

=1

n.ReLU(inplace=True),

=]

n.Conv2d(outchannels, outchannels, kernel_size=3, padding=1, dilation=dilation),
nn.ReLU(inplace=True)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

Fig. 12. Upsampling module

class Network(nn.Module):
def __init__(self, nclasses=1):
super(Network, self).__init__()

self.downl = DownBlock(3, 32, 1, pool=False)
self.down2 = DownBlock(32, 64, 2)
self.down3 = DownBlock(64, 128, 3)
self.down4 = DownBlock(128, 256, 4)
self.down5 = DownBlock(256, 512, 5)
self.upl = UpBlock(512, 256, 4)

self.up2 = UpBlock(256, 128, 3)

self.up3 = UpBlock(128, 64, 2)

self.up4 = UpBlock(64, 32, 1)

self,out = nn,Sequentiall

nn.Conv2d(32, nclasses, kernel_size=1),
nn.Sigmoid()

Fig. 13. Main network module

who can then view the intermediate results on the display page.

In the final stage, the user initiates the image fusion by clicking “Generate Result,” prompting the system
to process and display the fused image on the interface. Additionally, the interface allows users to compare the

fused image with the original images for easy evaluation.
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e

Upload Intermediate Result Output image

Upload Intermediate Result Original image
Generate Perspective View Generate Result

liallis

Fig. 14. GUI design

4 Experimental Results

To clearly illustrate the advantages of the proposed method, this section presents comparative experiments using
the SIFT algorithm alongside our approach. Here, we analyze and compare the image fusion results achieved by
the deep learning-based method and the SIFT algorithm.

4.1 SIFT Algorithm Fusion

Fig. 15 illustrates the feature point matching effect between two images using the SIFT algorithm.

Fig. 15. SIFT fusion effect
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4.2 Deep Learning Image Fusion

For the same images, the fusion results using the proposed deep learning method are shown in Fig. 16.

Fig. 16. SIFT fusion effect

4.3 Analysis of Results

The analysis below compares the deep learning-based image fusion method proposed in this paper with the tradi-
tional SIFT algorithm for image fusion.

Table 1. Speed comparison of the two methods

Algorithm Fusion time (sec)
Traditional SIFT algorithm 5.227
Deep learning 1.618

Table 1 shows that the deep learning-based image fusion method is approximately three times faster than the
traditional SIFT algorithm. This improvement in processing time is due to the extensive feature computation re-
quired by SIFT, whereas the deep fusion approach leverages pre-learned features from the model training phase,
significantly reducing time. Additionally, using GPU acceleration with deep learning can further decrease time
consumption.

Fig. 15 and Fig. 16 compare the fusion quality of the deep fusion method and the traditional SIFT fusion
scheme, with Fig. 15 representing the SIFT approach and Fig. 16 representing the deep fusion approach. It is
clear that the image clarity achieved with the deep fusion method surpasses that of SIFT. For instance, specific
details such as the door number are distinctly visible in the deep fusion results (Fig. 16) but are unclear in the
SIFT results (Fig. 15). This highlights the effectiveness of the deep learning fusion method over traditional tech-
niques.

In summary, the proposed deep learning method significantly outperforms the traditional SIFT approach in
both fusion time and quality, offering a promising direction for further research in image fusion algorithms.
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5 Conclusion

This paper demonstrates the use of deep learning in panoramic image fusion, structured into two main stages:
image deformation and image synthesis. To support these processes, a GUI interface was created to offer users
an intuitive view of the image fusion workflow. In the first stage, we used Pytorch to design a deep learning net-
work that deforms input images. To ensure reliable outcomes, we iteratively superimposed and refined features,
preserving the optimal iteration as the model for the second stage. The deformation results met necessary quality
standards, enabling a smooth transition into the fusion process. In the synthesis stage, we employed a second
Pytorch-based network tailored to fuse the processed images with high precision. Due to the substantial data
involved, this stage focuses on detailed feature capture, but hardware limitations, including the use of a single
GPU, impacted processing speed and quality. Future research could improve results by using multiple GPUs for
parallel processing. The GUI interface, while basic, effectively lets users select images for fusion. With further
development, it could incorporate real-time camera inputs for live fusion, expanding its practical applications.
An application example includes museum security, where panoramic fusion can enhance surveillance coverage,
tracking multiple visitors at once and facilitating rapid identification in cases such as theft. This approach could
significantly improve artifact protection by enabling more comprehensive monitoring.
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