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Abstract. With the rapid advancement of the Industrial Internet, technologies such as unmanned factories 
and smart factories have become increasingly pivotal for industrial transformation and upgrading. A key as-
pect of this transformation is the intelligent management of oilfield monitoring, which is vital for improving 
operational efficiency and reducing costs. This paper introduces a sophisticated intelligent platform designed 
for sensing, transmission, computation, and control within the oilfield monitoring sector, aligned with the 
Industrial Internet framework. Our platform is built on a cloud-edge integration architecture that integrates 
state-of-the-art data acquisition, communication technologies, and intelligent algorithms, enabling efficient 
data collection, secure transmission, and intelligent processing of oilfield data. We detail the platform’s 
three-tier architecture, including the cloud server layer, Mobile Edge Computing (MEC) server layer, and 
Remote Terminal Unit (RTU) layer, and discuss the implementation of key technologies such as homomorphic 
encryption for secure data transmission and OFDM for efficient communication. We also present the compu-
tation offloading strategy based on the Markov Decision Process (MDP) and the CEC-WGD approach, which 
leverages gradient descent to optimize task offloading decisions dynamically. Experimental verification across 
various oilfield environments confirms the platform’s significant potential to enhance monitoring efficiency, 
ensure production safety, and elevate operational intelligence. The findings demonstrate the platform’s ability 
to meet the high demands for real-time performance and security in oilfield monitoring and data transmission 
systems, positioning it as a powerful tool for advancing smart industrial management.
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1   Introduction

With the advent of Industry 4.0, Industrial Internet Technology has emerged as a central driving force behind the 
high-quality development of the manufacturing sector. This technology has not only advanced data acquisition 
and transmission capabilities but has also instigated revolutionary improvements in data processing and control 
systems. Smart Factories and Unmanned Factories, as pivotal applications of the Industrial Internet, impose un-
precedented demands for real-time, secure, and intelligent data collection, transmission, processing, and control, 
particularly within complex production environments. In recent years, significant progress has been made in the 
construction of smart oilfields. Traditional data processing methods are increasingly inadequate to meet these 
rapidly evolving demands, highlighting the need for more efficient and intelligent solutions. The Smart Sensing, 
Transmission, Computation, and Control Platform proposed in this paper is specifically designed to tackle these 
challenges. In this context, the emergence of Industrial Internet technology has revolutionized the manufactur-
ing industry. It not only improves productivity, but also injects new vitality into the sustainable development of 
the manufacturing industry. The rise of smart and unmanned factories requires a new level of real time, secu-
rity and intelligence in data collection, transmission, processing and control. These requirements are the main 
driving force behind the widespread application of Industrial Internet technologies in these advanced factories. 
For example, Tian et al. [1] have thoroughly explored the development of offshore smart oilfields by combining 
computerized big data with IoT technologies, revealing the great potential of Industrial Internet technologies in 
smart oilfield management. Meanwhile, Liu et al. [2] further explored the development of smart oilfields and its 
far-reaching impact on the transformation of oil-dependent cities. The smart sensing, transmission, computation, 
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and control platform proposed in this paper is carefully designed to meet these unprecedented requirements.
The platform facilitates comprehensive data perception and real-time transmission from industrial fields while 

employing advanced intelligent algorithms for in-depth analysis and processing. This enables precise control and 
decision support for industrial production. It features an innovative three-tier architecture comprising a Cloud 
Platform Layer, an Space-Air-Ground Integrated Network Layer, and a Factory Edge Layer, which ensures opti-
mal performance at every stage, from data collection to control. Research by Oliveira et al. [3] also demonstrates 
that leveraging evolutionary intelligence technology can create an efficient smart oilfield management system, 
further validating the rationale and advanced design of the platform discussed in this paper.

At the cloud platform layer, a high-performance cloud computing environment is established to manage large 
data and perform complex intelligent decision tasks [4]. The system adopts a layered intelligence-driven architec-
ture with multi-user collaboration on the cloud side for efficient task generation and decision offloading. In terms 
of communication model, the cloud platform uses vector quantization (VQ) technique before OFDM technique. 
This approach involves mapping oilfield data into a limited set of codebooks, which facilitates data compression 
while maintaining transmission efficiency, data integrity, and accuracy. Based on the communication model of 
OFDM technology and Shannon’s theorem, the cloud platform uses a maximum data transmission rate calcula-
tion method to ensure efficient and reliable oilfield data transmission. In addition, the cloud platform formulates 
the computation offloading strategy as an optimization problem and transforms it into a Markov Decision Process 
(MDP), which enables it to dynamically adjust the task offloading strategy according to changes in the oilfield 
environment and resource availability. In addition, the cloud platform also adopts the efficient computational off-
loading strategy of CEC-WGD to solve the MDP problem, thus proving the higher performance of this strategy 
compared with the traditional single-point MEC offloading or random offloading algorithms, as evidenced by the 
simulation results.

At the edge of the factory, numerous sensors and edge computing nodes are deployed, and these devices are 
responsible for collecting and processing various types of data from the production floor. This data from the 
shop floor is processed and analyzed in real time. Through cloud-edge collaboration, when the system detects 
the need for more computing power, the platform can transfer specific data processing tasks to the cloud, thus 
further improving the efficiency and accuracy of data processing. At the same time, the edge nodes will also per-
form preliminary data filtering and preprocessing work, which can significantly reduce the amount of data to be 
transmitted, thereby reducing the cost of data transmission and related communications. Such a system not only 
significantly improves the response time of the system, but also improves the overall operational efficiency of the 
plant.

Through a series of empirical tests, we have found that the platform has demonstrated excellent performance 
in numerous industrial applications. Specifically, the platform has been successfully applied to real-time monitor-
ing and data collection tasks of remote oil wells in Xinjiang oilfield operations. It is capable of transmitting well 
operation data in real time, ensuring that oilfield managers can grasp the production status of oil wells in a timely 
manner to make more accurate decisions. At Hebei Oilfield, the introduction of an efficient data analysis system 
supported by the platform has greatly improved the production decision-making process. This not only improves 
production efficiency, but also reduces operating costs.

In addition, the platform is able to transmit data in a stable and reliable manner despite the challenges of harsh 
weather conditions and remote locations in offshore oilfields. This provides strong technical support for the pro-
duction management of offshore oilfields and ensures the continuity and safety of the production process.

The intelligent sensing, transmission, computation, and control platform developed in this paper significant-
ly improves the intelligence and efficiency of industrial production. It provides a feasible solution for realizing 
comprehensive industrial production automation through real-time data acquisition, efficient data processing, and 
precise control algorithms. This platform not only has significant practical value, but also has a wide range of im-
plementation potential, and can play a key role in various industrial fields to promote the digital transformation 
of industrial production.

The rest of this paper is organized as follows: Section II discusses related work; Section III presents the sys-
tem model; Section IV discusses the implementation of key technologies including CEC-WGD methodology; 
Section V presents the experiments and analyses; and finally, Section VI outlines the future work.

2   Related Work

Ye et al. [5] put forth an intelligent resource scheduling method and system in response to the challenges posed 
by the advent of 5G and IoT technologies to cloud computing. The objective of the method is to reduce band-
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width costs, enhance quality of service (QoS), and mitigate network transmission delays through the real-time 
monitoring of bandwidth utilization and the dynamic reservation of MEC services. The study provides a detailed 
account of the mechanisms of resource scheduling, including the localization of MEC servers, client access 
monitoring, and bandwidth threshold-based MEC server leasing and resource caching policies. Furthermore, the 
article presents the architectural framework of the Cloud Edge Collaborative Resource Scheduling System, en-
compassing data extraction, real-time monitoring, dynamic decision-making, and co-scheduling modules. It un-
derscores the significance of dynamically adjusting MEC server reservations by customer behavior. This research 
offers novel insights into enhancing resource utilization efficiency and data security in cloud computing.

Li et al. [6] explore the application of cloud edge collaboration technology in adjustable resource flexible con-
trol. The article first points out the limitations of existing resource monitoring and control devices, and proposes 
a new cloud edge collaborative control architecture that aims to improve the regulation of adjustable resources 
and the overall collaborative processing capability through the collaboration between the cloud and the edge. The 
study classifies the supply and use of energy resources in detail and designs an overall resource optimization and 
scheduling architecture. By constructing a simulated case system based on Cloudsim, the experimental results 
demonstrate the benefits of the cloud-edge collaborative architecture in improving the real-time and efficiency of 
data processing.

Tang et al. [7] investigate the problem of optimized composition for Internet of Things (IoT) services in the 
collaborative environment of edge computing and cloud computing [6]. The article proposes an innovative ser-
vice composition mechanism that constructs an IoT service composition index by mining the prevalence of fre-
quent functional interactions in the device-edge-cloud architecture and sets the priority of service requests and 
branching node preferences to maximize the service composition utility of multi-user requests. The mechanism 
leverages edge devices to offload IoT device tasks to support service execution and ensure service allocation 
utility and experimental results show that the approach outperforms other techniques in reducing overall energy 
consumption and facilitating service utility maximization.

Laili et al. [8] proposed a parallel group merge evolutionary algorithm (PGMEA) for the cloud-edge collab-
orative scheduling problem of large-scale tasks for industrial Internet of Things (IIoT) environments, which 
effectively reduces the communication overhead and energy consumption among the cloud, edge, and end de-
vices by considering two cloud-edge collaboration modes, i.e., cloud-assisted edge computing and edge-assisted 
cloud computing. The algorithm achieves the allocation of cloud server and edge server resources for thousands 
of tasks in a few seconds by grouping tasks, applying evolutionary operators to find sub-solutions, and merging 
these sub-solutions for fine-tuning. The experimental results show that the approach significantly reduces the 
overall task computation time and energy consumption, thus improving the performance of cloud-edge coopera-
tion.

Zhang et al. [9] proposed a method for searching entities in Internet of Things (IoT) environments by combin-
ing edge computing and cloud computing resources to achieve an efficient and privacy-preserving entity search 
approach. The approach specifically focuses on solving the problem of limited storage and computing power 
of IoT devices by outsourcing encrypted entity data to improve search efficiency and protect user privacy. The 
paper designs a secure search architecture and methodology to support users to perform real-time search and 
global search, and also proposes a technique to adaptively discriminate similar entities of interest by constructing 
attribute-differentiated encrypted indexes and query vector sets through attribute analysis and feature extraction 
to improve search efficiency and ensure fast index updates. In addition, the paper employs searchable encryption 
(SE) techniques, especially the ASPE algorithm, to allow searching in encrypted data domains while protecting 
data security. Through simulation experiments, the paper verifies that the proposed method can effectively im-
prove the efficiency of IoT entity search while protecting privacy, demonstrating the potential and advantages of 
edge-cloud collaboration in entity search.

Rajesh et al. [10] aim to address data security issues in cloud computing, especially the protection of sensitive 
information. The paper proposes a novel encryption scheme based on multi-stage partial homomorphic encryp-
tion, which combines partial homomorphic encryption and multi-stage encryption techniques to realize secure 
and privacy-preserving data processing in cloud environments. The paper describes the implementation details 
of the RSA-based encryption scheme, including key generation, encryption, partial homomorphic multiplication, 
and decryption processes, and explores the potential of partial homomorphic encryption for applications in vari-
ous domains. The article emphasizes the importance of the proposed multi-stage partial homomorphic encryption 
scheme for secure data processing in cloud computing and points out that future research directions include the 
analysis of potential threats and the evaluation of system performance.

Kavya et al. [11] explore the application of homomorphic encryption techniques in cloud computing and their 
importance in securing data. The paper first introduces the convenience and security challenges of cloud comput-
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ing, followed by a detailed description of the basic concepts of homomorphic encryption, including its additive 
and multiplicative properties, and a comparison of the three types of partially homomorphic encryption, partially 
homomorphic encryption, and fully homomorphic encryption. By reviewing and analyzing the literature on ex-
isting homomorphic encryption research, the paper proposes a secure system for protecting medical data in the 
cloud using fully homomorphic encryption, aiming to improve the security and performance of data processing. 
The paper concludes by highlighting the potential of homomorphic encryption in cloud computing and points out 
that future research needs to address its performance issues to better protect online medical data using encryption 
systems such as EHES.

Research of Paroha et al. [12] describes a deep neural network (DNN)-based approach to real-time monitor-
ing of oilfields that outperforms conventional monitoring techniques in terms of accuracy, detection speed, and 
responsiveness. Abhay Dutt Paroha, author of the article, notes that the DNN system is able to learn complex 
patterns and relationships in the data, significantly improving the ability to detect anomalies and adapt to changes 
in oilfield dynamics with 92.5% accuracy, 96.7% responsiveness, and a detection speed of 0.28 seconds. The pa-
per also reviews related research, including real-time monitoring of hydrocarbon wells using network computing 
and neural network techniques, deep learning object recognition systems, and IoT data analytics. The proposed 
work includes data collection, feature extraction, DNN architecture design, training and learning, and real-time 
implementation. The results show that the method outperforms existing methods in several performance metrics, 
demonstrating the potential of deep learning techniques to improve decision making and operational efficiency in 
the petroleum industry.

Research of Xu et al. [13] discusses the methodology of smart oil field malfunction diagnosis using Internet 
of Things and big data analytics. The article is based on the analysis of a large amount of historical data from 
oil and water wells to monitor the changes in some important parameters in the wells and used for trend pre-
diction and early warning system. The authors use the 6 Sigma algorithm to process the historical data and use 
big data trend analysis to diagnose six operating conditions, such as sand production and moisture anomalies, in 
combination with multiple parameters. The experimental results show that the algorithm is stable and reliable in 
practical applications, and is of great significance in ensuring normal oilfield production and improving oilfield 
management capabilities. The article also introduces the three-level structure of IoT in oilfield production: data 
acquisition and monitoring layer, data transmission layer, and data analysis and production management layer, 
and discusses in detail the relationship model between historical data trends and oilfield failures. Based on the 
6 Sigma standard, the article determines the warning interval thresholds for each parameter and establishes an 
evaluation model for the 6 Sigma warning program. Finally, the stability and effectiveness of the algorithm is 
verified through experiments conducted on the actual database of Tianjin Dagang Oilfield, with an accuracy rate 
of more than 97%, which indicates that combining the theory of big data with the actual needs of oilfields has an 
important innovative and practical application value, and it helps technicians to easily operate and promotes the 
improvement of the oilfield management system.

Wazir et al. [14] present an innovative Internet of Things (IoT)-based architecture designed to provide the 
oil and gas industry with a reliable, efficient, and accurate monitoring solution for the oil and gas industry. 
Addressing the shortcomings of existing wireless sensor networks (WSNs) and supervisory control and data 
acquisition (SCADA) systems in the industry, such as system heterogeneity, high cost, and lack of flexibility 
and scalability, the paper’s IoT architecture supports upstream, midstream, and downstream operations in the oil 
and gas value chain by streamlining the data collection process, enhancing communication orchestration, and 
reducing the complexity of device programming. The architecture consists of three core modules: smart objects, 
gateways, and control centers, each of which includes sensor, network, and application layers to enable effec-
tive monitoring and control of interconnected assets in the oilfield environment. The main contribution of the 
research is to propose an IoT architecture for oilfield environments, starting from the IoT sensing infrastructure, 
through the network domain, to the IoT applications. In addition, the architecture considers the design aspects 
of each layer and proposes techniques to support the reliability, efficiency and robustness characteristics of each 
layer. The paper also provides scenarios for applying this architecture in three areas of the oil and gas industry, 
including storage tanks, pipelines, and wellheads, with reduced reliance on labor through automation. Ultimately, 
the IoT architecture presented in this paper provides a new perspective on monitoring and operations in the oil 
and gas industry by enabling early identification and resolution of inefficiencies, saving time and money, and in-
creasing business productivity.
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3   System Architectures

We have developed a multi-user, cloud-edge collaborative, hierarchical OEC network architecture, as outlined in 
Fig. 1. This architecture is structured into three key layers: the cloud server layer, the Mobile Edge Computing 
(MEC) server layer, and the Remote Terminal Unit (RTU) layer [15]. In the oilfield, the RTU layer is com-
prised of l RTUs. The edge layer is formed by intelligent oil well production optimization platforms, which are 
equipped with edge servers and are situated around the cloud server. These platforms are designed to commu-
nicate primarily with RTUs within their communication range, with each RTU being able to link with only one 
platform during each time slot t. The system is also capable of task offloading to cloud servers, which can then 
interface with service providers to fulfill a broad spectrum of service needs. In the communication between MEC 
servers and cloud servers, employing the Paillier homomorphic encryption algorithm ensures secure transmission 
and computation of data in its encrypted state. This allows cloud servers to perform specific algebraic operations 
on ciphertext without decryption, and then securely transmit the results back to the MEC server for decryption, 
thereby achieving efficient data processing while protecting data privacy. This multi-user, cloud-edge collabo-
rative, hierarchical OEC network architecture effectively allocates computing and storage resources, enhancing 
data security, reducing transmission costs, and improving data processing efficiency and system reliability. It 
enables rapid data processing near the source, minimizing latency while maintaining the security of data in an 
encrypted state, meeting the high demands for real-time performance and security in oilfield monitoring and data 
transmission systems. Furthermore, the flexibility and scalability of this architecture allow it to adapt to evolving 
business needs and support a variety of services, thereby enhancing the intelligent level of oilfield operations. 
The framework of cloud-edge collaboration network architecture is shown in Fig. 1.

Fig. 1. Framework diagram of production monitoring cloud platform

3.1   Task Model

In the transmission model of the OEC, time is discretized to {1, 2, 3, …, T}. Each time slot has a duration of 
length τ. At the commencement of each time slot, an RTU is capable of transmitting a computational task, de-
noted by n, i  represents the number of RTUs, and di(t), the size of the task data. The decision to offload tasks is 
denoted by S n

k ={0,1}, where k∈K, K = {1,2} correspond to the MEC server and cloud server, respectively. For 
any given computational task, only one offloading decision can be made [16].
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3.2   Codebook-based Vector Quantization Modulation

At the transmitter, each active device first quantizes di ∈RW and then modulates the quantized values onto a com-
mon modulation codebook. All active devices will transmit their simultaneously modulated codewords.

(1) Quantization Design: All devices use a single quantization codebook, denoted as U∈RQ×N, where N =2 J 
represents a J-bit quantization with N quantization codewords, and Q ≥ 1(Q∈N) denotes the length of each quan-
tization codeword, i.e., Q = 1 and Q > 1 indicate scalar quantization and vector quantization (VQ), respectively. 
The vector at device di∈RW is divided into D = W/Q blocks. Each block is then quantized independently using 
the codebook. Let the quantization be bk∈ [N]D, where the d-th element, [bk]d , represents the quantization index 
of the corresponding block. Specifically, [bk]d is identified by finding the quantization codeword with the mini-
mum Euclidean distance, which can be expressed as:

:, ( 1) 1: 2[ ]
[ ] arg min [ ] [ ]k d i i d Q dQi N
b U d − +∈

= −                                                    (1)

To determine the quantization codebook, any VQ method can be employed. By using VQ, the size of each 
partial model update can be reduced, thereby reducing the uplink (UL) communication overhead by a factor of 
Q. Additionally, a selection vector xd

k∈{0,1}N is introduced, where |xd
k |0 = 1 and [xd

k ][bk]d
 =1. Thus, the quantized 

version of di can be represented as:

1( ) ( )[( ) ,..., ( ) ]T D T T
i i D k kd C d I U x x= = ⊗                                                  (2)

(2) Codebook-based Modulation: This paper considers a common random access codebook shared by all de-
vices, denoted as L NP C ×∈ , where each column of P is a codeword of length L, with a total of N codewords. In 
the proposed scheme, there is a one-to-one mapping between P and U. Specifically, if a device obtains a quan-
tization value, the modulation codeword (or sequence) [U]:,n , with the same index n, [P]:,n will be transmitted. 
Vector quantization combined with codebook-based modulation is particularly suited for the current wireless net-
work environment due to its efficient data representation and transmission capabilities. This method maps signal 
vectors onto predefined codewords, optimizing the compression efficiency of signals while ensuring reliable and 
accurate communication within limited bandwidth. Consequently, it maintains data integrity, reduces transmis-
sion latency, and enhances spectrum utilization.

3.3   Communication and Computation Model

The RTUs use an advanced access technique, Orthogonal Frequency Division Multiplexing (OFDM), to com-
municate with the edge nodes of the OEC network. In this communication process, each RTU device occupies a 
separate channel for bidirectional transmission. The bandwidth of each channel is set to B. According to the fa-
mous Shannon’s theorem, we can calculate the maximum data transmission rate that can be realized between the 
RTU device and the MEC server. Shannon’s theorem states that the maximum data rate of a channel depends on 
the bandwidth of the channel and the signal-to-noise ratio. Using Shannon’s formula, we can accurately calculate 
the maximum data transmission rate that can be realized between the RTU device and the MEC server under the 
given conditions of channel bandwidth and signal-to-noise ratio, as shown below:

2log 1 i i
n

O

P h
R B

N
 ⋅

= ∗ + 
 

                                                            (3)

Here, Pi denotes the transmission power of the vehicular network user, hi signifies the wireless channel gain, 
and NO  represents the power spectral density of the Gaussian noise. The probability of task transmission failure is 
denoted by TRAN

np .
For tasks offloaded to the MEC server, the transmission delay is defined as:
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MEC i
n

n

d
t

R
=                                                                         (4)

For tasks offloaded to the cloud server, the transmission delay is defined as:

CS i
n

CS

d
t

R
=                                                                         (5)

where RCS is the data transmission rate of the cloud server.
The computational delay for task n can be expressed as:

COMP i i
n n

k

d b
t

C
=                                                                       (6)

Here, n
kC  represents the computational resources allocated by the server k to the task n.

Task offloading primarily encompasses three stages: task uploading, task execution, and result feedback. 
However, since the result data is typically much smaller than the RTU transmission data, this paper assumes that 
the delay for result feedback can be neglected [17]. The total processing delay Tn for task n can be calculated as 
follows:

( )MEC n CS HE COMP
n n k n n nT t S t t t= + ⋅ + +                                                       (7)

Here, HE
nt represents homomorphic encryption latency.

The total energy consumption of a task can be defined as:

2
MEC k

n i nE P t p= ⋅ +                                                                   (8)

When tasks are offloaded and require cloud server involvement, 2
kp  indicates the computational energy consump-

tion across different servers, and Ck represents the total computational resources of the server.
The transmission unreliability of a task is defined as:

TRAN COMP TRAN COMP
n n n n nR p p p p= + − ⋅                                                      (9)

where COMP
np is the probability of task computation failure.

To account for users’ preferences for delay, energy consumption, and quality of service in various scenarios, 
we consider incorporating a weighted factor indicator θ , here θ 1 + θ 2 + θ 3 = 1. The cost function for this pa-
per’s model is constructed as follows:

1 2 3( ) ( ) ( ) ( )n n n nG t T t E t R tθ θ θ= + +                                                    (10)

3.4   Problem Formulation

The objective of this paper is to minimize the system’s long-term total cost under constraints of latency, energy 
consumption, and service quality. We formulate the optimization problem as follows:



116

Design and Implementation of Intelligent Oilfield Monitoring and Data Transmission System Based on Cloud-Edge Collaboration Technology

2

, 1 1
1: min lim ( ) ( )

n n
k k

N k
n
k n

S C t n k
P S t G t

=

→∞ = =

⋅∑∑
2

1

1

1

1: ( ) 1,

2 : 1,

3 : 0 ,

4 :1 (1 )

5 : ,

k
n
k

k
N

n n
k k

n
n
k k

N
TRAN e
n

n

n

C S t n N

C S C k K

C C C n N

C p P

C T n Nτ

=

=

=

=

= ∀ ∈

≤ ∀ ∈

≤ ≤ ∀ ∈

− − ≤

≤ ∀ ∈

∑

∑

∏

Constraints in the optimization problem are defined as: C1 denotes that each task can only be offloaded to 
a single location; C2 signifies that the total computational resources allocated to all tasks must not exceed the 
available resources; C3 represents the limitations on the computing and communication resources assigned by 
the server to the tasks; C4 stipulates that the probability of task offloading failure for all tasks should not exceed 
a certain threshold; C5 indicates the maximum delay limit for tasks [18].

4   Implementation of Key Technologies

Markov Decision Processes (MDPs) are a powerful mathematical framework that provides a systematic ap-
proach to solving complex decision problems characterized by stochastic and dynamic changes. This framework 
is particularly suited to optimization in environments of uncertainty, helping decision makers formulate the best 
course of action in the face of various possible future scenarios. Through the use of dynamic programming tech-
niques and Bellman equations, MDPs are able to recursively compute the optimal strategy under different states 
to maximize long-term cumulative payoffs or minimize costs. The core strength of MDPs lies in their ability to 
simulate and analyze complex decision paths, providing quantitative solutions to decision problems that involve 
multiple stages and multiple choices. The ability of such frameworks to deal not only with deterministic factors, 
but also with stochastic variables, significantly improves the accuracy and reliability of simulations of real-world 
problems. The flexibility and robust modeling capabilities of MDPs have led to a wide range of applications in 
various fields, including, but not limited to, economics, engineering, computer science, and operations research, 
among others. In addition, MDPs have shown great potential in policy evaluation and strategic planning [19]. By 
combining theoretical analysis with practical applications, MDPs not only provide policy makers with a system-
atic approach to evaluation, but also enable them to validate the effectiveness of different strategies through sim-
ulation experiments. This process of simulation and validation strengthens the link between theory and practice 
and ensures the scientific and practical nature of the decision-making process. In this way, MDPs not only help 
policy makers better understand the behavior of complex systems, but also provide them with powerful tools to 
make informed decisions in the face of uncertainty and risk.

4.1   MDP Definition

Problem P1 is categorized as a mixed integer nonlinear programming (MINP) issue. To maintain its long-term 
stochastic optimization properties, we have reformulated P1 into a Markov Decision Process (MDP) framework, 
which encompasses the elements of State, Action [20]. To circumvent this challenge, this study employs an effi-
cient strategy for computation offloading, drawing on the CEC-WGD (Weighted Gradient Descent) approach.

1.	 State: At time slot t , system state space can be defined as s(t)=(dt, bt, fk = 1(t), fk=2(t), B(t)), where dt is the 
size of task, bt is the amount of computation required of task, fk = 1(t), fk=2(t) are the computational resourc-
es of the MEC and cloud server, respectively, and B(t) is the bandwidth resource [21].

2.	 Action: The action space consists of the offloading decision variables, allocated computation resourc-
es, and communication resources for each task, respectively. Thus, the action can be defined as xk 
= 1 2 1 2

1 2{ , ,..., , , ,..., , , ,..., }N N
k k k k k k nS S S C C C B B B , where 1 2{ , ,..., }N

k k kS S S  represents the offloading decision in 
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OEC network, 1 2{ , ,..., }N
k k kC C C  represents the proportion of resources allocated, 1 2{ , ,..., }nB B B  represents 

the number of sub-channels assigned for each task.
3.	 We aim to minimize the weighted sum objective function Gn(t). This can be achieved using gradient de-

scent or other single-objective optimization algorithms. Taking gradient descent as an example, the update 
rule is:

1 ( )k k n kx x G xα+ = − ∇                                                              (11)

Where xk is the vector of decision variables at the current iteration, α is the learning rate, ( )n kG x∇  is the gra-
dient of Gn(t) at xk .

4.2   CEC-WGD Approach

The essence of this method lies in employing the gradient descent algorithm to optimize a weighted sum ob-
jective function that encompasses multiple objectives. Through continuous iteration, the decision variables are 
progressively adjusted to approximate the optimal solution of the problem. During this process, weights can be 
assigned to reflect the relative importance of different objectives, ensuring a balance is struck in multi-objective 
decision-making. Moreover, the algorithm is equipped with clear termination conditions; once these conditions 
are met, such as reaching a certain number of iterations or achieving a solution quality that meets preset thresh-
olds, the iteration process will be halted. This ensures both the efficiency of the algorithm and the feasibility of 
the solution. In this manner, we can identify a solution in multi-objective optimization problems that not only 
meets the requirements of each objective but also possesses practical operability.

1 2 3( ) ( ) ( ) ( )n n n nG x T x Q x E xλ λ λ∇ = ∇ + ∇ + ∇                                            (12)

1 1 2 3( ( ) ( ) ( ))k k n k n k n kx x T x Q x E xα λ λ λ+ = − ∇ + ∇ + ∇                                      (13)

In contemporary oilfield management, the efficiency of real-time monitoring and data transmission is crucial. 
To enhance the security and efficiency of data transmission—particularly in the complex oilfield environments of 
Xinjiang and similar regions—an intelligent data transmission control system has been implemented. This sys-
tem leverages cloud-edge collaboration and homomorphic encryption technology. The primary objective of this 
algorithm is to ensure the real-time, secure, and reliable transmission of monitoring data from oilfields by facili-
tating efficient data acquisition and transmission processes. The algorithm flow is illustrated in Table 1.

Table 1. Algorithm flow

Algorithm 1. Cloud-edge collaboration and weighted gradient descent strategy
1: Initialize system parameters: cloud platform layer, MEC server layer, and RTU 
layer. Initialize data acquisition and communication technology parameters.

2: while Time slot t from 1 to T: 
3: for each RTU: Data collection from oilfield monitoring. 
4: for each task: Compute offloading decision , select MEC server or cloud server. 
5: if Task offloaded to MEC server: Calculate transmission and computation delay. 
6: else if Task offloaded to cloud server: Calculate transmission and computation 
delay.
7: for each RTU: Use OFDM technology to transmit data to MEC or cloud server. 
8: if Transmission fails: Update the probability of task transmission failure.
9:for each task: Execute computation on MEC or cloud server and update resource 
allocation.

10: if Result data is small: Ignore result feedback delay. 
11: else: Calculate result feedback delay. 
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12: Solve the optimization problem using MDP and CEC-WGD method to update 
offloading strategy.

13: Update weights and gradient descent parameters.

1 ( )k k n kx x G xα+ = − ∇

14: Check constraints: Task offloading failure probability, delay limits, and resource 
allocation.

15: if Constraints violated: Adjust offloading strategy.
16: end while

5   Simulation Experiments and Analysis

To validate the effectiveness of the intelligent oilfield data transmission control system, which integrates cloud-
edge collaboration and homomorphic encryption technology, an experimental platform was established using 
Matlab. The Xinjiang Oilfield, known for its complex geographical environment and significant data transmis-
sion challenges, served as the case study. Various terminal devices and intelligent sensors were selected for data 
acquisition, simulating different operational scenarios.

As a major oil production base in China, the Xinjiang Oilfield faces unique challenges related to geographic 
terrain and data transmission. Therefore, it is crucial to build a robust network topology that enables efficient co-
operation between edge nodes and core servers. To evaluate the control performance of the system and analyze 
its data transmission capability, emphasis is placed on evaluating the impact of different discount factors on con-
vergence, the impact of computational power of MEC servers on total cost and mission arrival rate under differ-
ent algorithms.

The processing power of the MEC server, aggregation server, and cloud server are set to =1.5*10^9 Hz, 
=2.5*10^10 Hz and =1.5*10^11 Hz respectively. the transmit power is = 2. 5 W, the wired data rate is == 15 
Mbps, the Gaussian noise power spectral density is = -174 dBm/Hz, and the channel gain is = 127+ 30logd. The 
total system bandwidth is 20 MHz, and each subchannel has a bandwidth of 1 MHz. 30logd. The total system 
bandwidth is 20 MHz and the bandwidth of each subchannel is 1 MHz.

A comprehensive experimental analysis was conducted to evaluate the system’s performance in intelligent oil-
field data transmission, and the results are presented in Table 2.

Table 2. Data result

Communication frame 
rate/fps

Sending period
/ms

Sent data
/byte

Received data
/byte

Data accuracy/% Average transmission delay
/ms

2 1000 2250 2250 100.0 315
5 500 4500 4500 100.0 360
10 200 9000 9000 100.0 423
20 100 18000 17965 99.8 476
40 50 36000 35750 99.3 532
60 20 45000 44450 98.8 627
120 10 95000 93300 98.2 679
150 5 130000 127400 98.0 744

Based on Table 2, it can be seen that after implementing the designed system for smart oilfield data transmis-
sion, the maximum data accurate rate is 98%, and the average delay is 744 ms, which meets the basic data trans-
mission requirements.

In addition, we also conduct many experiences under different situations, as is shown in the figures below.
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Fig. 2. Influence of discount factors on convergence

We first analyze the effect of different discount factors on convergence, as shown in Fig. 2. We set the discount 
factor to 0.9, 0.7 and 0.1. Fig. 2 shows that the training loss converges faster as the discount factor increases. This 
is because if the discount factor is set too small, the system can only reduce the total long-term cost of the system 
in the short term. If the discount factor is increased, the system gives more weight to future returns and the long-
term return of the system is more guaranteed. To verify the performance of the CEC-WGD algorithm, three com-
putational offloading methods, MEC Offloading (MO), Cloud Offloading (CO), and Random Offloading (RO), 
are compared with the CEC-WGD algorithm. 

Fig. 3. Influence of data size of task on Cost G

Fig. 3 shows the effect of task data size on the total system cost for the different algorithms. The data size of 
each task varies between 2 and 10 MB. On average, the CEC-GD algorithm reduces the total system cost by 6%, 
12%, and 21% compared to the CO, RO, and MO algorithms respectively.

Fig. 4. Influence of computing capacity of MEC severs on Cost G
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Fig. 4 shows the impact of MEC server processing power on the total cost of ownership for different algo-
rithms. On average, the CEC-WGD algorithm reduces the total system cost by 6%, 14%, and 22% compared to 
the CO, RO, and MO algorithms respectively. This indicates that the computation of tasks is positively correlated 
with the computational power of the edge servers and that the CEC-WGD approach outperforms the baseline 
strategies in terms of energy consumption, latency control, and reliability in the network.

Fig. 5. Relationship between system reward and task arrival rate

However, as shown in Fig. 5, we can see that when the task arrival rate is too high, i.e., the inflow of tasks is 
too fast, the number of backlogged tasks in the UAV computation queue increases significantly. Due to the lim-
ited capacity of the queue, this leads to an increase in the task discard rate. In this case, it is difficult to increase 
the total number of tasks that the system can handle, and a bottleneck may even occur. As the number of tasks 
increases, the reward value of the system will slowly decrease and eventually converge to a relatively stable lev-
el. However, if the task arrival rate is too low, the number of tasks to be processed in the system is small and the 
queuing delay is almost negligible. In this case, the performance of the multiple dynamic offloading algorithms 
tends to match that of the local processing algorithms, so the system reward values are essentially the same. 
Overall, as the number of tasks increases, our proposed CEC-WGD algorithm shows a clear advantage in execut-
ing the offloading strategy, and compared to other algorithms, it is able to better cope with the changes in the task 
arrival rate, and thus achieves a higher system reward value.

6   Future Work

In the future, we will continue to explore the deep integration of cutting-edge technologies, including the 
Industrial Internet, IoT, big data, and artificial intelligence. Our goal is to build a more efficient, intelligent, and 
reliable platform for smart sensing, transmission, computing, and control, designed to meet the ever-evolving 
demands of the market and advancements in technology. To achieve this, we will prioritize innovative computing 
paradigms like edge and fog computing, examining their integration with the Industrial Internet. This integration 
aims to optimize data processing workflows, enhance system response times, and ultimately improve overall 
performance and user experience. We are committed to continuous efforts and innovation to ensure our platform 
adapts to future technological trends, providing advanced and reliable solutions across various industries.

With the widespread adoption of Industrial Internet technology, data security and system compliance will be 
key areas of our research focus. We will enhance the security mechanisms of our platform, incorporating data 
encryption, access control, intrusion detection, and more to ensure the secure transmission and storage of pro-
duction data. We will explore various encryption algorithms, assessing their applicability in different scenarios 
to identify the most suitable technologies. Additionally, we will investigate access control policies to guarantee 
that only authorized users can access sensitive data, thereby preventing unauthorized access and potential data 
breaches. Moreover, we will develop and deploy advanced intrusion detection systems for real-time monitoring 
of network activities, enabling the prompt identification and response to potential security threats. We will keep 
pace with regulatory and policy developments to ensure our platform consistently meets industry standards and 
compliance requirements. Regular reviews and updates to our security strategies will align with evolving laws 
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and regulations. Furthermore, we will maintain close collaboration with industry experts and regulatory bodies 
to ensure our security and compliance measures meet the latest industry standards. Through these initiatives, we 
aim to deliver a secure, reliable, and compliant Industrial Internet platform.

To enhance the practicality and market competitiveness of our smart sensing, transmission, computing, and 
control platform, we will actively expand its application scenarios and functionalities across key sectors. In the 
oil and gas industry, we will explore the platform’s potential for intelligent inspection, predictive maintenance, 
and energy efficiency management to improve operational efficiency and safety. For example, smart inspection 
systems will monitor the operational status of equipment in real-time, facilitating early problem detection and 
minimizing downtime, thereby increasing productivity. The predictive maintenance functionality will utilize data 
analysis to anticipate equipment failures, enabling proactive maintenance and reducing losses from unexpected 
breakdowns. In energy efficiency management, our platform will assist oil and gas companies in optimizing ener-
gy usage, reducing consumption, and promoting sustainable practices.

In the manufacturing sector, we will promote the platform’s application in smart manufacturing, supply chain 
collaboration, and quality control, enhancing the industry’s overall competitiveness. Smart manufacturing ca-
pabilities will automate and optimize production processes, improving productivity and product quality. Supply 
chain collaboration will enable seamless integration across the supply chain, enhancing responsiveness and flexi-
bility. Quality control will leverage advanced data analytics to monitor quality indicators in real-time, facilitating 
timely identification and resolution of quality issues, ensuring stable and reliable product quality.

Additionally, we will expand the platform’s applications and functionalities in the energy transmission sector. 
In power transmission, our platform will support real-time grid monitoring and intelligent dispatching to enhance 
stability and reliability. In natural gas transmission, it will enable intelligent pipeline monitoring and leak de-
tection, ensuring safe transmission. By continually expanding application scenarios and functionalities, we will 
enhance the vitality and broader application value of our smart sensing, transmission, computing, and control 
platform, enabling it to play a more significant role across sectors and drive digital transformation and intelligent 
upgrades in related industries.

To further promote the widespread adoption and healthy development of Industrial Internet technology within 
our platform, we are committed to actively participating in the formulation and implementation of relevant stan-
dards. We will forge close partnerships with industry standards organizations, research institutions, and business-
es to collaboratively advance the standardization of Industrial Internet technology. By establishing unified techni-
cal standards and interface specifications, we aim to significantly enhance interoperability and portability among 
different platforms, thereby lowering the barriers and costs associated with technology adoption. This approach 
will facilitate the rapid dissemination and widespread application of technological advancements, accelerating 
the development of our smart sensing, transmission, computing, and control platform.

References

[1]	 G.D. Tian, P. Han, Research on the Application of Offshore Smart Oilfield Construction Based on Computer Big Data 
and Internet of Things Technology, Journal of Physics: Conference Series 1992(3)(2021) 032002.

[2]	 H. Liu, X.H. Ma, Smart oilfield development and transition of petroleum-based cities, Frontiers of Engineering 
Management 6(2)(2019) 299-301. 

[3]	 R.G. Oliveira, L.F. Almeida, J.G.L. Lazo, A.G. Manhães, M.F. Pinto, Smart oil field management system using evolu-
tionary intelligence, IEEE Access 11(2023) 45798-45814.

[4]	 A.D. Paroha, Integrating IoT, AI, and Cloud Technologies for Sustainable Oilfield Operations, in: Proc. 2024 9th 
International Conference on Cloud Computing and Big Data Analytics, 2024.

[5]	 Y. Ye, R. Liao, S. Wang, L. Li, J. Zhang, Intelligent Resource Scheduling Method for Cloud Edge Collaboration, in: 
Proc. 2023 International Conference on Applied Physics and Computing, 2023.

[6]	 X. Li, J. Zhang, H. Zhou, X. Pang, Z. Xu, Y. Ji, Adjustable Resource Flexible Control Architecture Based on 
Cloud Edge Collaboration Technology, in: Proc. 2024 5th International Conference on Artificial Intelligence and 
Electromechanical Automation, 2024.

[7]	 J. Tang, T. Lin, D. Wang, Z. Zhou, Optimized Composition for Multiple User Service Requests Based on Edge-Cloud 
Collaboration, IEEE Access 9(2021) 94862-94878.

[8]	 Y. Laili, F. Guo, L. Ren, X. Li, Y. Li, L. Zhang, Parallel Scheduling of Large-Scale Tasks for Industrial Cloud–Edge 
Collaboration, Internet of Things Journal 10(4)(2023) 3231-3242.

[9]	 P. Zhang, Y. Chui, H. Liu, Z. Yang, D. Wu, R. Wang, Efficient and Privacy-Preserving Search Over Edge–Cloud 
Collaborative Entity in IoT, Internet of Things Journal 10(4)(2023) 3192-3205.

[10]	 C.R. Rajesh, S.H. Penakalapati, N. Tejashwini, T.R. Chandini, D.B. Srinivas, A Multi-Stage Partial Homomorphic 



122

Design and Implementation of Intelligent Oilfield Monitoring and Data Transmission System Based on Cloud-Edge Collaboration Technology

Encryption Scheme for Secure Data Processing in Cloud Computing, in: Proc. 2023 2nd International Conference on 
Edge Computing and Applications, 2023.

[11]	 A. Kavya, S. Acharva, A Comparative Study on Homomorphic Encryption Schemes in Cloud Computing, in: Proc. 
2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 
2018.

[12]	 A.D. Paroha, Real-Time Monitoring of Oilfield Operations with Deep Neural Networks, in: Proc. 2024 2nd International 
Conference on Advancement in Computation & Computer Technologies, 2024.

[13]	 B. Xu, W. Wang, Y. Wu, Y. Shi, C. Lu, Internet of things and big data analytics for smart oil field malfunction diagnosis, 
in: Proc. 2017 IEEE 2nd International Conference on Big Data Analysis, 2017.

[14]	 W. Z. Khan, M. Y. Aalsalem, M. K. Khan, M. S. Hossain, M. Atiquzzaman, A reliable Internet of Things based archi-
tecture for oil and gas industry, in: Proc. 2017 19th International Conference on Advanced Communication Technology, 
2017.

[15]	 H. Jia, Y. Wang, W. Wu, Dynamic Resource Allocation for Remote IoT Data Collection in SAGIN, Internet of Things 
Journal 11(11)(2024) 20575-20589.

[16]	 Y. Li, L. Xu, The Service Computational Resource Management Strategy Based On Edge-Cloud Collaboration, in: 
Proc. 2019 IEEE 10th International Conference on Software Engineering and Service Science, 2019.

[17]	 M. Adhikari, M. Mukherjee, S. N. Srirama, DPTO: A Deadline and Priority-Aware Task Offloading in Fog Computing 
Framework Leveraging Multilevel Feedback Queueing, Internet of Things Journal 7(7)(2020) 5773-5782.

[18]	 Z. Zhang, W. Ma, Q. Xu, R. Tang, J. Wang, W. Chen, ECOMA: Edge-Cloud Collaborative Framework for Multi-Task 
Applications, in: Proc. 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud 
Computing, Sustainable Computing & Communications, Social Computing & Networking, 2020.

[19]	 M. Hao, D. Ye, S. Wang, B. Tan, R. Yu, URLLC Resource Slicing and Scheduling in 5G Vehicular Edge Computing, in: 
Proc. 2021 IEEE 93rd Vehicular Technology Conference, 2021.

[20]	 K. Khan, W. Goodridge, S-MDP: Streaming With Markov Decision Processes, IEEE Transactions on Multimedia 21(8)
(2019) 2012-2025.

[21]	 E. Liu, H. Zhu, A Quick Employment of Markov Decision Process (MDP) in Partially Unknown Three-dimensional 
Discrete Space, in: Proc. 2023 International Conference on Intelligent Computing and Control, 2023.


