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Abstract. To address the slow learning of traditional PSO algorithms and alleviate population collapse in the 
objective space, this paper proposes a multi-objective particle swarm optimization algorithm using a Logistic-
tent chaotic map with GOBL and non-inertial Lévy flight (MOPSOLGN). Firstly, the Logistic-tent chaotic 
map with generalized opposition-based learning initializes individual positions, avoiding blindness and un-
certainty in the initial population and improving its distribution. Secondly, a particle flight method combining 
an individual competition mechanism with k-means clustering divides particles into losers and winners, using 
a new non-inertial Lévy flight dynamical equation to balance exploration and exploitation and ensure the al-
gorithm can escape local solutions. Thirdly, a differential mutation strategy enables the population to escape 
collapse and increases the diversity of the optimal solution set. Comparative experiments with state-of-the-art 
multi-objective algorithms on benchmark functions verify that MOPSOLGN allows individuals to converge 
to the real Pareto frontier more quickly and with better distribution.

Keywords: evolutionary algorithm, multi-objective optimization, non-inertial Lévy flight dynamical equa-
tion, logistics-tent chaotic map

1   Introduction

Multi-objective optimization problems (MOPs) [1-2] involve simultaneously optimizing multiple conflicting 
objectives, requiring complex decision-making to find the best trade-offs. Unlike single-objective optimization, 
improving one objective in MOPs often compromises others, making solutions challenging. The trade-off solu-
tion set is called the Pareto optimal solution set or Pareto frontier (PF). Due to the NP-hard [3] nature of many 
practical engineering optimization problems, traditional mathematical programming methods are often infeasi-
ble. Evolutionary computation, a population-based heuristic search method that simulates natural selection and 
evolutionary processes, is well-suited for MOPs due to its random search strategy and applicability. Researchers 
have proposed various multi-objective evolutionary algorithms (MOEAs) in recent decades, broadly categorized 
into three types:

(1) MOEA based on domination relation: Identifies non-dominated individuals and eliminates dominated ones 
using a Pareto-based fitness allocation strategy. Examples include NSGA-II [4], SPEA2 [5], and PESA-II [6].

(2) MOEA based on decomposition: Aggregates sub-objectives into a single target, transforming the problem 
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into a single-objective optimization. Examples include MOEA/D [7], MOEA/D-M2M [8], and RVEA [9].
(3) Metric-based MOEA: Uses evaluation metrics to assess algorithm quality and guide search and solution 

selection. Examples include IBEA [10], SMS-EMOA [11], and HypE [12].
Above MOEAs still have the deficiencies of insufficient convergence ability and low computational effi-

ciency, and hence some new evolutionary strategies and mechanisms are constantly proposed or introduced to 
improve them. For example, Wang et al. [13] introduced a multi-attribute elite individual game mechanism to 
enhance convergence and diversity. Wang et al. [14] propose a dual-search mode MOEA with an adaptively 
switching strategy analyzing the correlation between the objective optimization direction and constraint satis-
faction direction is designed to determine whether to build the constraint surrogate models to assist the current 
evolutionary search. Song et al. [15] developed a cooperative evolutionary algorithm with a dual-population 
approach to balance convergence and feasibility. Lian et al. [22] proposes the Human Evolutionary Optimization 
Algorithm (HEOA). HEOA divides the global search process into two distinct phases: human exploration and 
human development. Logistic chaos mapping is employed for initialization. In the human exploration phase, an 
initial global search is conducted, followed by the human development phase, in which the population is catego-
rized into leaders, explorers, followers, and losers, each utilizing its own distinct search strategy. Additionally, 
Differential Evolution (DE) has been applied to multimodal MOEA with an improved crowding distance [17]. 
PSO is used to solve different multi-objective application problems, such as reduce localization error in Wireless 
Sensor Network [18], continuum robot’s developed modeling and control [19], Optimizing Lithium-Ion Battery 
Modeling [20]. Firefly algorithm (FA) is involved in solving the MOPs based on multiply cooperative strategies 
(MOFA-MCS) [21]. Despite these advancements, achieving a balance between convergence and diversity in 
MOEAs remains challenging.

Therefore, building on the comprehensive analysis of prior research, this paper proposes a MOPSOLGN algo-
rithm, which combines dominance relationships, evaluation metrics, and decomposition principles. The innova-
tion mainly includes two aspects:

(1) Logistics-tent chaotic map with GOBL strategy (LTCMGOBL): This paper proposes LTCMGOBL for 
population initialization, using decomposition and k-means clustering to divide the population into sub-popula-
tions. Within each sub-population, individuals are classified as losers or winners through pairwise competition 
based on dominance relationships and crowding distance mechanisms.

(2) Non-inertial Lévy flight dynamical equation: A new non-inertial Lévy flight dynamical equation guides 
the flight adjustment of individuals who fail in LTCMGOBL competition. It initially directs towards the winners 
and Leeroy particles, employing a novel Levy flight mode influenced by the average position vector of all Leeroy 
particles.

2   Related Works and Motivation

This section provides background knowledge, including the mathematical definition of MOPs and three related 
works: PSO algorithm, Logistic-tent chaotic map, and Lévy Flight. These were thoroughly investigated to ad-
dress the slow learning of traditional PSO algorithms and alleviate population collapse in the objective space. 
The motivation for the algorithm design stems from analyzing these issues’ impacts on MOPs.

2.1   MOPs and MOEA

Without loss of generality, a MOP with n decision variables and m objective functions, taking the minimization 
problem as an example, can be expressed in the form of equation (1).
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In Eq.(1), x is called the decision vector, and X is the m- dimensional decision space, y is called the objective 
vector, and Y is the n- dimensional objective space. The objective function F defines the mapping function and 
n objectives that need to be optimized simultaneously. If X is a connected and closed region in the space Rm, and 
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the objective function fi (i =1, 2, ..., n) about x is continuous.
The complexity of MOPs lies in the absence of a single solution that can optimize all objectives. Instead, 

a Pareto optimal set balancing all objectives is sought, with a preference for better convergence and diversity. 
However, many practical engineering problems have irregular PFs. Based on existing research, the MOPSOLGN 
algorithm employs various strategies to maintain high diversity and convergence in the population.

2.2   Particle Swarm Optimization

PSO, a widely used evolutionary algorithm (EA), is applied to solve many complex optimization problems, 
including MOPs [2, 16]. In PSO, each individual in the population, represented as a ‘particle’ without mass or 
volume, moves in a D-dimensional objective space, where each particle represents a feasible solution. To find the 
optimal solution for a minimization problem, the positions and velocities of the particles are updated using the 
formulas in Eq. (2)-(3), as illustrated in Fig. 1.
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Where, ω is the inertia factor, c1,c2 are respectively individual learning factors and group learning factors, pi 
denotes the current optimal position, and g denotes the global optimal position , r1,r2 represent two random fac-
tors between 0 and 1. 

Fig. 1. Illustration of particle motion

PSO algorithms have a strong biological and social background and require fewer parameters, making them 
adaptable to various types of objective functions and constraints. However, they also have some limitations and 
drawbacks. In the early stages of evolution, particles are widely distributed, theoretically offering high diversity. 
Yet, inappropriate strategies for updating velocity and position can quickly lead to a loss of diversity, affecting 
the balance between exploration and exploitation in later stages of the algorithm. In the later stages of evolution, 
as particles tend to cluster around high-quality solutions, the algorithm may face a decrease in the diversity of the 
solution set, limiting its ability to generate a broad set of Pareto-optimal solutions. 

In subsequent research, this paper attempts to propose a new strategy from the perspective of maintaining di-
versity while improving convergence speed, aiming to better avoid the aforementioned drawbacks.

2.3   Logistics-tent Chaotic Map

The Logistic-tent chaotic map [26, 27] is generated by integrating the classical one-dimensional Logistic map 
and Tent chaotic map. The chaotic map combines the complex chaotic dynamics characteristics of Logistic with 
the faster iteration speed, more autocorrelation and the characteristics of Tent chaotic map for a large number of 
sequences. Its mathematical formula is defined as follows:
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Fig. 2. Logistics-tent chaotic map distribution traversal graph

The mathematical formula for Logistics-tent chaotic map is expressed as in equation (4):
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As can be seen from Fig. 2 and formula (4), it can show exhibit dynamic behavior, including periodic orbit, 
chaotic orbit and bifurcation phenomena. Additionally, the chaotic sequence it generates is uniformly distrib-
uted in the interval [0,1]. Many practical experiences have demonstrated that using a chaotic map, instead of 
a conventional uniformly distributed random number generator, can generate better random individuals than a 
pseudo-random number generator. This gives the chaotic map significant advantages in solving complex MOPs. 
Therefore, this paper takes advantage of the Logistic-tent chaotic map for population initialization.

2.4   Lévy Flights

Lévy flights [23, 24, 28] are a type of non-Gaussian random process, commonly used to stepwise describe human 
travel patterns, the foraging trajectories of organisms, and other continuous random stepwise trajectories in math-
ematical form. They are also among the best strategies in random walk models. Lévy flight trajectories are a kind 
of Markov random process, where the step lengths follow a heavy-tailed Lévy distribution, as shown in equation 
(5).

1( ) ~| | ,0 2 .L s s γ γ− − < ≤                                                                (5)

The random step s of Lévy flights can be obtained from equation (6):

1/ .
| |

as
b γ=                                                                           (6)

where, a, b both obey normal distribution, 2~ (0, )aa N σ , 2~ (0, )bb N σ , σa and σb , satisfy equation (7): 
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where Γ  is the standard Gamma function, by adjusting the γ value, a trade-off can be made between global and 
local search, resulting in better search performance in the optimization algorithm.

In the MOPSOLGN algorithm, Lévy flight perturbations enhance the search process by enabling both lo-
cal and global exploration. Small-area local searches near the current optimal solution accelerate convergence, 
while random long-distance movements allow other particles to explore farther regions, enhancing global search 
capability and avoiding local optima. Lévy flights introduce random movements with large jumps and sharp 
directional changes, expanding the search range and increasing population diversity. This approach effectively 
addresses the challenge of approximating the global Pareto front (PF) in multi-objective optimization problems 
with multiple local PFs.

3   Proposed MOPSOLGN Algorithm

The main framework of the MOPSOLGN algorithm is outlined in this section. The algorithm comprises four key 
components: (1) LTCMGOBL for population initialization, (2)-(3) CSS and a non-inertial Lévy flight dynamical 
equation for guiding populations to explore uncharted spaces, (4) A differential mutation strategy introduced for 
avoid aggregating of populations in regions that are not globally optimal.

3.1   Logistic-tent Chaotic Map with GOBL Strategies (LTCMGOBL)

The use of chaotic maps for generating random number sequences offers superior randomness and uniformity. 
Thus, in optimization algorithms, particularly during the population initialization phase, substituting the conven-
tional uniform distribution random number generator with chaos mapping can significantly enhance the initial 
population quality. This, in turn, boosts the algorithm’s search efficiency and solution quality.

This paper enhances the Logistic-tent chaotic map with a generalized opposition-based learning initialization 
strategy, yielding notable improvements over the traditional opposition-based learning approach. Let’s delve into 
the generating opposition-based learning strategy [30]: 

For initial solutions, a corresponding reverse solution is generated for each one as follows: 

min max( )  .d d
i iOP K X X X= + −                                                             (8)

Where OPi is the opposite individual of Xi , K is a random value, and K∈U(0,1), min
dX , max

dX  are the lower and 
upper boundary values of the D-dimensional search space, respectively. 

In this paper, I have imposed restrictions on the opposition process, because the generation method of OPi  
might result in the existence of negative solutions. When OPi is less than 0, I have implemented certain con-
straints.

;  OP 0 .i i iOP OP rand if= − ∗ <                                                        (9)

Where rand ∈ U(0,1). 
The primary steps of the LTCMGOBL strategies are outlined in Algorithm 1. 

Algorithm 1. LTCMGOBL

Output: initial population NP;
1. Initialize population P using Logistic-Tent chaotic map;
2. Generate opposition population OP of P;
3.   If OP < 0 then
4.      modify the OP ;
5.   end
6. Elite select half individual from {P È OP} as NP;
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3.2   A competitive Selection Mechanism within Subpopulations (CSS)

Multi-population evolutionary strategies can effectively accelerate convergence speed, but they also increase the 
risk of the population getting trapped in local optima. To address the issue of particles potentially congregating 
in non-global optimal regions, this paper first combines the non-dominance relationship with the optimal particle 
selection strategy in PSO, and employs the K-means clustering algorithm to divide them into subpopulations (the 
clustering effect is shown in Fig. 3). The competition mechanism is defined by comparing the non-dominance 
level and crowding distance between two individuals, with individuals within each subpopulation competing in 
pairs. Ultimately, the losers are guided by the winners and Leeroy. The number of subpopulations is determined 
by Equation (10).

2
arg min , ( 1,2, , )( 1,2,..., ) .i i jj

subpop k x i N j kµ= − = =                                (10)

Where μi is the cluster centroids and is the arithmetic mean of the coordinates of all points within that cluster, μ1, 
μ2, ..., μK Rn.

Fig. 3. K-means clustering effect figure

The main steps of CSS are list in Algorithm 2.

Algorithm 2. CSS

Input: initial population NP, the number of clusters K;
Output: Leeroy individual Le; loser and winner individuals Xl,Xw ;
1. Cluster center initialization with k-means++ algorithm; 
2. For i = 1 to K do
3.    Pairwise competition in the i subpopulation to obtain loser and win-
ner individuals;
4.     Randomly select Lei in the highest non-dominated rank sequence of 
the current subpopulation;
5. End

3.3   Non-inertial Lévy Flight Dynamical Equation

In PSO, due to the tendency of particles to cluster around high-quality solutions, the algorithm may encounter a 
decrease in the diversity of the solution set, affecting the balance between subsequent exploration and exploita-
tion. Therefore, developing a new dynamical equation is crucial, allowing for steady evolution while ensuring di-
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versity. To this end, three innovative strategies are proposed. First, using the difference between the mean swarm 
positions instead of the initial velocity improves convergence rate and precision of the solution, only the flight 
direction of losers identified by CSS is updated, effectively increasing population diversity. Second, losers are 
guided by two types of particles: the winners of the competition and a Leeroy particle, ensuring smooth progres-
sion of population optimization. Third, a Leeroy Lévy flight mechanism is devised to adjust the flight direction of 
particles, reducing the probability of the population falling into local optima. The formula for this adjustment is 
given in equation (11)-(15):

, 1 , , 2 , ,( 1) ( ( ) ( 1)) ( ( ) ( )) ( ( ) ( )) .l i k k w i l i k i l iV t s u t u t c X t X t c Le t X t+ = ⋅ − − + − + −                (11)

, , , ,( 1) ( ) ( 1) ( 1) .l i l i k i l iX t X t L t V t+ = + + + +                           (12)

Where, the parameters involved are described as follows:
(1). Vl,i(t) denote the velocity vectors of the loser, Xw,i(t) represents the position vector of the winner.  

s(0.1,0.2) denotes a differential coefficient, uk(t) and uk(t−1) are the mean swarm positions of the tth and 
(t−1)th generation in the k th subpopulation. k is the clustering group index, Lek,i(t) denotes the Leeroy particle.

(2). Lk,i(t+1) denotes the Leeroy Lévy flight in the k th subpopulation. It is determined according to equation 
(13). 
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Where L represents walk steps of Lévy flight, and r1, r2 are two random integers. X k
r1 and X k

r2 denote two ran-
dom particles in the k th subpopulation. ( )kP t  is the average position vector of all Leeroy particles. j = 1−ik / NP, 
where ik is the number of losers in the k th subpopulation, rand(0,1). 

(3). Parameters c1,c2 retain the same definitions as in equation (2). Adaptive parameters are far better for flight 
than static parameters, so all parameters adopt adaptive strategies. The formulas are expressed as in equations 
(14).
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c1 and c2 represent “own experience” and “social experience”, respectively. c1 gradually decreases as it in-
creases, and c2 behaves oppositely. This analysis suggests that a larger c1 favors local searching guided by own 
experience, is more beneficial in the early stage of the algorithm’s evolution. Conversely, a larger c2 favoring 
global search guided by social experience, is more advantageous in the later stage.

3.4   Differential Mutation

Mutation is a widely used technique to avoid algorithms becoming trapped in local optima. In this context, the 
paper integrates differential mutation into the proposed algorithm to bolster its capability for global search, draw-
ing inspiration from the classical Differential Evolution (DE) strategy as discussed in references [25, 29]. The 
process is encapsulated in equation (15).

1 2 3 4 5( ) ( ) .t t t t t t
i r r r r rV X F X X F X X= + ⋅ − + ⋅ −                                           (15)
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Where F[0,2] is the scaling factor, i = {1,2,..., Np}, Np is the population size, V t
i is the mutant vector, and 

r1,r2,r3,r4,r5{1,2,..., Np}\{i} are randomly generated, r1≠r2≠r3≠r4≠r5, CR is randomly chosen from the set 
{1,2,..., N}, which guarantees that U t

i has at least one component from V t
i.

3.5   Pseudo-code for the MOPSOLGN

Algorithm 3 (MOPSOLGN) combines the four strategies of 3.1-3.4 effectively, and the main steps of the 
MOPSOLGN algorithm are listed below.

Algorithm 3. MOPSOLGN

Input: 
    A MOP and a stopping criterion;
    Population size N;
    K-means clustered subgroups K;
    Boundary of X and V;
Output:  
    Final solution set;
1. LTCMGOBL;
2. Compute the objective function values;
3. While stopping criterion is not satisfied do
4.     CSS;
5.     For i = 1:K do
6.      Update Vk(t) and Xk(t) of particles according to non-in-
ertial Lévy flight dynamical equation;
7.         non-dominated sort NP refer to reference [4];
8.         differential mutation NP generates MP;
9.        combine population (NP + MP) to CP and repeat step 2;
10.        elitism selects population CP to restore the initial 
population size N;
11.     End
12. End

4   Experimental Study

This section is divided into three parts: The first part details the experimental setup, including benchmark test 
functions, main parameter settings, and performance metrics. The second part presents the experimental results 
and comparative analysis of six algorithms, including MOPSOLGN, across seven benchmark functions. The 
third part analyzes the validity of the three main strategies of MOPSOLGN. All experiments were conducted us-
ing MATLAB 2023a.

4.1   Experiment Settings

The experimental study uses two types of MOP test functions, ZDT [31] and DTLZ [32], to verify the algo-
rithm’s performance. Table 1 summarizes these functions’ characteristics, including the number of decision vari-
ables, objectives, and real PF samples. 

Two performance metrics, IGD [33] and SP [33], are adopted to evaluate the algorithms’ effectiveness. IGD 
(inverted generational distance) is a comprehensive index measuring both diversity and convergence of the popu-
lation, defined as follows in equation (17):
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Equation (17) defines IGD, which calculates the average distance from each reference point on the Pareto 
approximate frontier (P*) to the nearest solution in the solution set (P). Here, d(x*,x) represents the Euclidean dis-
tance between points x* and x, and |P*| is the number of points in the set P*. A smaller IGD value indicates better 
algorithm performance. SP, defined in equation (18), stands for Spatial Indicator and measures the population’s 
diversity.

| |
2

1

1( ) ( )  .
| | 1

P

i
i

SP P d d
P =

= −
− ∑                                                         (18)

In SP, di calculates the distance between the two closest solutions using the Manhattan distance between xi  
and xj , not the Euclidean distance. It refers to the standard deviation of the minimum distance from each solution 
to other solutions, serving as an important indicator of the spacing between adjacent solutions. A smaller SP val-
ue indicates a more uniform solution set.

Table 1. Test function properties

Test function Decision variables Objectives
ZDT1

30 2ZDT2
ZDT3
ZDT4

10 2
ZDT6

DTLZ2 12 3
DTLZ7 22 3

4.2   Experiment Comparison and Results Analysis

The performance of MOPSOLGN was compared with six advanced MOEAs: MOEA/D, MOPSOCD, MOPSO, 
NSGA-II, SMPSO, and SPEA2. Each algorithm was run independently 30 times across seven benchmark func-
tions (Table 1), with 100 generations per run. All algorithms except MOPSOLGN used the standard parameter 
settings from the MOEAs platform PlatEMO [34], while MOPSOLGN's specific configurations are detailed in 
Table 2.

Table 2. Parameter settings of MOPSOLGN

Algorithm Parameter settings

MOPSOLGN NP = 300, gen = 100, Pc = 0.7, 
Pm = 1/NP, n1 = 2, n 2= 5, k = 7

Table 3 and Table 4 present the average IGD and SP values (with standard deviations in parentheses) for the 
algorithms, highlighting superior results in bold. MOPSOLGN outperformed the others on the ZDT1, ZDT2, 
ZDT4, ZDT6, and DTLZ7 benchmarks, achieving the lowest IGD values. Table 4 shows that MOPSOLGN 
demonstrated better dispersion, indicating a more uniform distribution of non-dominated solutions along the PF. 
However, MOPSOLGN does not perform well on ZDT3 and DTLZ2, but its overall performance is still better.
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Table 3. Mean/ (standard deviation) of IGD metrics on multi-objective test functions

Func. MOPSOLGN MOEA/D MOPSOCD MOPSO SMPSO SPEA2

ZDT1 1.42e-3
(3.78e-5)

1.5355e-2 
(1.18e-2)

1.4305e-3 
(2.70e-5)

1.5427e-1 
(5.35e-2)

1.8003e-3 
(2.46e-4)

3.0110e-3 
(3.28e-4)

ZDT2 1.41e-3
(4.12e-5)

5.4705e-2 
(8.45e-2)

1.4465e-3 
(2.56e-5)

7.4951e-1 
(4.07e-1)

1.6469e-3 
(4.83e-5)

3.3329e-3 
(5.15e-4)

ZDT3 3.78e-3
(4.33e-4)

2.7080e-2 
(2.39e-2)

1.8178e-3 
(1.04e-4)

1.6388e-1 
(5.22e-2)

3.4831e-3 
(4.45e-3)

2.6396e-3 
(2.77e-4)

ZDT4 2.13e-3
(6.42e-4)

2.5171e-2 
(1.64e-2)

8.9246e+0 
(4.01e+0)

8.0752e+0 
(4.87e+0)

3.0705e+0 
(1.57e+0)

9.3013e-3 
(8.90e-3)

ZDT6 1.07e-3
(3.44e-5)

6.4863e-3 
(2.19e-3)

1.0991e-3 
(1.91e-5)

2.3840e-3 
(4.10e-4)

1.2962e-3 
(5.28e-5)

7.5006e-3 
(4.84e-3)

DTLZ2 3.64e-2
(2.78e-4)

2.9067e-2 
(1.50e-4)

5.1975e-2 
(2.55e-3)

3.7010e-2 
(7.44e-4)

4.2036e-2 
(1.39e-3)

3.0959e-2 
(2.51e-4)

DTLZ7 3.52e-2
(2.34e-3)

1.2984e-1 
(1.82e-1)

4.4327e-2 
(1.85e-3)

4.8773e-1 
(1.48e-1)

1.9211e-1 
(1.35e-1)

3.5579e-2 
(8.46e-4)

Table 4. Mean/ (standard deviation) of SP metrics on multi-objective test functions

Func. MOPSOLGN MOEA/D MOPSOCD MOPSO SMPSO SPEA2

ZDT1 1.26e-3
(2.30e-5)

3.4391e-3 
(1.35e-3)

1.6256e-3 
(7.23e-5)

3.5983e-3 
(3.50e-4)

2.1309e-3 
(1.60e-4)

1.3555e-3 
(7.74e-5)

ZDT2 1.37e-3
(1.56e-5)

6.3868e-3 
(4.43e-3)

1.6436-3 
(7.03e-5)

3.6047e-3 
(3.08e-4)

2.1839e-3 
(1.27e-4)

1.9452e-3 
(5.38e-4)

ZDT3 5.87e-3
(6.28e-4)

8.6641e-3 
(2.43e-3)

2.4406e-3 
(1.77e-4)

5.2423e-3 
(1.38e-3)

3.3319e-3 
(1.65e-3)

1.5848e-3 
(1.34e-4)

ZDT4 2.64e-3
(7.33e-4)

3.9818e-3 
(1.38e-3)

2.5216e-1 
(3.83e-1)

1.8521e-3
(4.45e-3)

4.4978e-2 
(5.04e-2)

3.8863e-3 
(4.51e-3)

ZDT6 1.76e-3
(1.39e-4)

2.4619e-3 
(6.81e-4)

1.0439e-1 
(1.08e-1)

2.2391e-2 
(2.50e-2)

2.4312e-2 
(7.43e-2)

2.7423e-3 
(1.25e-3)

DTLZ2 2.78e-2
(5.41e-4)

2.8618e-2 
(3.96e-4)

3.1479e-2 
(1.57e-3)

3.0480e-2 
(1.20e-3)

3.0019e-2 
(3.14e-3)

1.3167e-2 
(7.00e-4)

DTLZ7 1.42e-2
(2.76e-4)

1.0042e-1 
(2.13e-2)

3.8190e-2 
(3.05e-3)

2.4902e-2 
(7.83e-3)

3.1482e-2 
(1.07e-2)

1.6209e-2 
(1.01e-3)

To furtherly detail the convergence and distribution of the nondominated solution sets obtained by the com-
parison algorithms, Fig. 4 to Fig. 8 respectively display the nondominated solution sets and PFs when the 6 algo-
rithms solve the ZDT1, ZDT2, ZDT4, ZDT6, and DTLZ7 benchmark functions.

Fig. 4 and Fig. 5 show that the MOPSOLGN and MOPSOCD algorithms fit the PF most closely. Table 3 and 
Table 4 indicate that MOPSOCD’s optimization performance is slightly inferior to MOPSOLGN.
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Fig. 4. True and obtained PF by six compared MOEAs on ZDT1

Fig. 5. True and obtained PF by six compared MOEAs on ZDT2
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Fig. 6. True and obtained PF by six compared MOEAs on ZDT4

This study focuses on addressing the slow learning issue of traditional PSO algorithms and mitigating popula-
tion collapse in the objective space. These issues are effectively resolved, as shown in Fig. 6, where MOPSOLGN 
outperforms other algorithms in convergence and diversity.

Fig. 7. True and obtained PF by six compared MOEAs on ZDT6
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Fig. 8. True and obtained PF by six compared MOEAs on DTLZ7

However, Table 3 and Table 4, along with Fig. 7 and Fig. 8, indicate that MOPSOLGN performs poorly on 
segmented-type test functions. Despite this, it shows superior convergence and diversity in three-objective op-
timization problems compared to most other algorithms. These experimental results align with the anticipated 
outcomes discussed in related work.

4.3   Strategy Validity Analysis

Three main strategies of MOPSOLGN are analyzed in this subsection, i.e., Logistic-tent chaotic mapping with 
GOBL strategy (LTCMGOBL), non-inertial Lévy flight dynamical equation and differential mutation (DM). In 
order to facilitate comparison, three variants of MOPSOLGN are set, that is 1) removes LTCMGOBL. 2) re-
moves non-inertial Lévy flight dynamical equation, and replaced by equation (2)-(3). 3). removes DM.

Taking ZDT4 as an example, as shown in Fig. 9, the comparative experiments highlight the significant impact 
of missing strategies on the optimization process. The absence of the LTCMGOBL strategy negatively affects the 
exploration speed and the diversity of the global search, leading to blindness and uncertainty in the optimization 
process. This ultimately prevents the uniformity of traversal and the diversity of the population from reaching the 
expected outcomes. Without the non-inertial Lévy flight dynamical equation, the population may converge pre-
maturely because the particles’ flight paths are not effectively guided, thereby limiting the overall exploration and 
exploitation capabilities of the algorithm and increasing the likelihood of becoming trapped in local optima. The 
algorithm performs best on the ZDT4 test function, underscoring the importance of DM. It helps the population 
avoid the overly restrictive constraints of k-means clustering, preventing population collapse.
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Fig. 9.  Comparison trend graphs between MOPSOLGN and its three variants on ZDT4

5   Conclusions

In this paper, a MOPSOLGN algorithm was proposed, which integrates four strategies: LTCMGOBL, CSS, a 
non-inertial Lévy flight dynamic equation, and DM. Initially, LTCMGOBL improves population uniformity, it-
eration speed, and solution diversity. CSS and the non-inertial Lévy flight dynamic equation then address issues 
of population collapse, evolutionary stagnation, and local optimization. Finally, DM helps particles escape local 
optima. Comparative experiments with benchmark test functions show that MOPSOLGN excels in IGD and SP 
metrics, outperforming five advanced algorithms. This confirms that the combined strategies significantly en-
hance the algorithm’s performance.

However, MOPSOLGN still has a small probability of population collapse in the early optimization stages, 
affecting efficiency. This may be due to the interaction between the Leeroy particle force magnitude and mutation 
in the non-inertial Lévy flight process. Further study is needed to effectively combine these methods for MOPs. 
Additionally, the performance on segmented-type test problems requires improvement.

Future work will address high-dimensional, large-scale, and dynamic optimization problems, which are criti-
cal for real-world applications such as resource scheduling and edge computing.
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