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Abstract. Color image recognition based on real-number neural networks can encounter challenges such as 
redundant self-information and insufficient mutual information in ternary color feature extraction. These is-
sues can lead to inaccurate perception of color information by the model. Furthermore, deep neural networks 
with over 100 layers may experience a decline in model performance due to the large number of parameters. 
To overcome these challenges, this study extends real-number neural networks into the quaternion domain 
to construct a series of color image recognition models based on quaternion residual networks. The model 
designs include a lightweight structure, quaternion residual blocks, quaternion bilateral convolution, and 
quaternion L1 regularization. The quaternion residual network has half the number of parameters as the corre-
sponding real-number network, and the lightweight design for parameters helps solve the computational com-
plexity problem of deep networks. Moreover, the quaternion bilateral convolution can reasonably preserve 
the image color structure, and the quaternion L1 regularization can effectively sparse the training parameters, 
thereby mitigating network overfitting. Experimental results confirmed that the proposed models can improve 
image recognition rates while reducing algorithmic complexity compared to the corresponding real-number 
networks.
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1   Introduction

In the mid-19th century, Hamilton created quaternion algebra [1], an extension of complex numbers. Quaternions 
are hyper-complex numbers, containing a real part and three imaginary parts. These numbers represent four-di-
mensional vectors with one real part and three imaginary parts, unlike complex numbers, which represent two-di-
mensional vectors using one real and one imaginary part. Quaternions are extensively utilized in various fields, 
such as robotic space exploration [2], three-dimensional human motion modeling [3], and computer graphics [4]. 
Their unique structure makes them highly effective for computations and modeling of image graphics in multi-di-
mensional spaces.

Image recognition is a crucial technology utilized in computer vision, pattern recognition, machine learning, 
and other technical fields. In recent years, significant progress in image recognition has been driven by convolu-
tional neural networks (CNNs), leading to the development of several prominent models such as ShuffleNet [5], 
Visual Geometry Group (VGG) [6], AlexNet [7], GoogLeNet [8], residual network (ResNet) [9], and the recently 
proposed PathNet [10]. Among these networks, ResNet can effectively mitigate performance degradation caused 
by gradient disappearance and gradient explosion [11] during the training of deep neural networks, thus attract-
ing the attention of researchers. 

Despite advancements in CNN architectures, challenges remain in accurately representing color information 
in color images. Real-number CNNs often suffer from redundant self-information and insufficient mutual infor-
mation during ternary color feature extraction. Furthermore, deep neural networks with over 100 layers, such as 
ResNet101 and ResNet152, may experience reduced performance compared to their corresponding shallower 
networks due to the excessive number of parameters.

To address the aforementioned issues, we enhance the utilization of color information in color images by de-
scribing image color structure in the quaternion domain. This approach allows for a more accurate representation 
and perception of color information during image processing tasks. The bilateral multiplication of a general qua-
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ternion and a pure imaginary quaternion produces another pure imaginary quaternion. Leveraging this principle, 
we design a quaternion residual network structure that preserves the three-dimensional nature of image features. 
In which the ternary colors in color images are represented as three imaginary axes of pure imaginary quaterni-
ons. Moreover, a quaternion bilateral convolution is introduced to eliminate redundant ternary color information 
while preserving mutual color information, utilizing the properties of quaternion bilateral multiplication. We also 
design a quaternion L1 regularization method to address the challenges of increased algorithmic complexity. This 
method computes the amplitude of each quaternion element and applies L1 norms to these amplitudes. In this 
framework, sparsity is encouraged in the trained model parameters, effectively reducing overfitting in quaternion 
deep residual networks.

In summary, we propose a novel quaternion residual network structure, termed QResNet, for color image rec-
ognition. We develop a series of models based on QResNet, including QResNet-18, QResNet-34, QResNet-50, 
QResNet-101, and QResNet-152. These models feature a lightweight architecture with quaternion residual 
blocks, quaternion bilateral convolution, quaternion pooling, quaternion batch normalization, and quaternion L1 
regularization. Compared to traditional real-number networks, QResNet models offer a more efficient represen-
tation of ternary color properties and significantly reduce the number of parameters, facilitating the effective de-
ployment of deep residual networks. This approach enhances recognition accuracy and stability for color images 
while reducing algorithmic complexity.

The rest of this paper is organized as follows: Section 2 reviews related works, while Section 3 introduces the 
quaternion algebra underlying the proposed model. Section 4 details the proposed QResNet models, and Section 
5 presents the experimental results. Finally, Section 6 concludes the paper.

2   Related Works

As ResNet continues to deliver excellent performance and gains popularity, it has become a foundational frame-
work in many research fields. Numerous modified versions have emerged in the image recognition domain. In 
2017, G. Huang et al. [12] proposed the Dense Convolutional Network (DenseNet), which enhances ResNet 
by connecting each layer to every other layer in a feed-forward manner, thereby improving the network’s an-
ti-overfitting capability. In 2019, C.-Y. Yu et al. [13] introduced S-DenseNet, a compact variant of DenseNet that 
enhances feature extraction by replacing standard convolution with group convolution. In 2021, D. O’Neill et al. 
[14] presented Sparse DenseNet, which utilizes a genetic algorithm to explore the space between a standard feed-
forward network and DenseNet, identifying and removing redundant skip connections to simplify the network’s 
structure.

In recent years, researchers have been exploring the integration of quaternion feature extraction with CNN 
networks, leveraging the rapid advancements in neural network algorithms [15]. In 2018, X.-Y. Zhu et al. [16] 
introduced quaternion convolutional layers and quaternion fully connected layers, constructing a quaternion 
convolutional neural network (QCNN) based on the VGG-S architecture [17]. This QCNN achieved an image 
recognition accuracy of approximately 76.95% on the Oxford 102 Flowers dataset [18]. However, the study did 
not extend the quaternion domain to components such as batch normalization and dropout layers. In 2019, Q.-L. 
Yin et al. [19] improved the QCNN model by incorporating an attention mechanism, which enabled the model 
to focus on critical regions within the images. This enhancement led to an image recognition accuracy of about 
85.37% on the CIFAR-10 dataset [20].

The applications discussed above extend on real-number network in the quaternion domain. They have 
proven that the quaternion networks can reduce the number of parameters and improve classification accuracy, 
compared to real-number networks. However, there is limited literature on quaternion networks for residual net-
works, primarily because the three primary colors in an image do not align with the four dimensions required by 
quaternions. In 2018, C. J. Gaudet et al. [21] introduced a quaternion convolutional kernel for residual networks 
using unilateral quaternion multiplication, achieving accuracies of approximately 94.56% and 73.99% on the 
CIFAR-10 and CIFAR-100 datasets [20], respectively. To meet the four-dimensions requirement for quaternion 
multiplication, this algorithm incorporates grayscale information to create the fourth dimension. This strategy in-
creases the number of convolution kernel parameters, which in turn raises algorithm complexity and exacerbates 
overfitting

Based on the above discussion, we investigate the effective integration of quaternions with deep residual net-
works and propose a series of residual network models enhanced by quaternions. The main contributions of this 
paper are as follows:
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(1) We introduce a quaternion bilateral convolution kernel with 4 parameters specifically for color images. 
This kernel maintains the three-dimensional nature of image features, removes redundancy in ternary color in-
formation, and preserves color mutual information. Based on this quaternion convolution kernel, we propose a 
novel quaternion residual network structure termed QResNet.

(2) We propose a novel quaternion L1 regularization method for the QResNet structure. This regularization 
technique promotes parameter sparsity in the network, effectively reducing overfitting during model training.

(3) We develop a series of color image recognition models based on QResNet, including QResNet-18, 
QResNet-34, QResNet-50, QResNet-101, and QResNet-152. These models feature lightweight architectures 
that reduce algorithmic complexity compared to their real-number counterparts. Additionally, we introduce other 
model designs such as quaternion pooling and quaternion batch normalization.

3   Quaternion Algebra

A quaternion q in the quaternion space Q comprises a real part and three imaginary parts, represented as follows:

r i j k r i j k,   , , , ,q q q i q j q k q q q q q = + + + ∈ ∈  ,                                        (1)

where qr is the real part, qi, qj, qk denote the three imaginary parts, and R is the real-number space. Additionally, 
i, j, and k denote the three imaginary axes, linearly independent, which must obey the Hamiltonian rule [1]:

2 2 2 1, , ,i j k ijk ij ji k jk kj i ki ik j= = = = − = − = = − = = − =  .                            (2)

A quaternion with a real part of 0 is called a pure imaginary quaternion, and its spatial representation is denot-
ed as 

̂

:

i j k i j k
ˆˆ̂ 0 ,    , ,q q i q j q k q q q q，= + + + ∈ ∈   .                                           (3)

We consider two quaternions, p = pr + pri + pj j + pkk and q = qr + qri + pj j + qkk . The standard operation rules 
for quaternions are as follows.

Add and subtract:

r r i i j j k k( ) ( ) ( ) ( )p q p q p q i p q j p q k± = ± + ± + ± + ±  .                                      (4)

Multiply with a real-number:

r i j kq q q i q j q kλ λ λ λ λ= + + +  .                                                       (5)

Multiplication of two quaternions (Hamiltonian product):

r i j k r i j k

r i i j j i i j j

j i j i i j j

r k k r r k k

ir k r k r k k r

( )( )

( ) ( )

( ) ( )

pq

p q p q p q p q

p p i p j p k q q i q j q k

q

p q p q p q p q i

p q p q p q p q j p q p q p q p k

=

= − − − + + + −

+ − + + + + − +

+ + + + + +

 .                            (6)

Conjugate:

r i j kq q q i q j q k∗ = − − −  .                                                              (7)
Amplitude:
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* 2 2
j k

2
r i

2q qq qq q q= = + + +  .                                                      (8)

4   QResNet Models Design

4.1   Quaternionic Bilateral Convolution

The bilateral multiplication of a pure imaginary quaternion, denoted as q^ , and a general quaternion, denoted as 
w, is expressed as follows:

2 2 2 2
r i j k r k r j

2 2 2 2
r k r i j k r i

2
i k r

r i j k i j k r i j k

i i j j i k k

i j i j j k k

r j i ji k j r

( )( )( )

[( ) 2( ) 2( ) ]

[2( ) ( ) 2( ) ]

[

ˆ̂

2( ) 2( )

0

(

w w w w w w w w w w w

p wqw w w i w j w k q i q j q

w i

w w w w w w w w w w

k w w i w j w k

q q q

w w j

w w w w w w w w

q

w w

q q

q q

∗ =

= + − − + − + +

+ + + − + − + −

+

= + + + + + + −

− + + +

−

−

−

2 2 2
i j k k) ]w w q k− +

 ,                          (9)

where w* is the conjugate of w, as described in (8). The computation result p^ in (9) shows that it is a pure imagi-
nary quaternion because its real part is 0.

Therefore, leveraging the above property of pure imaginary quaternions, we consider a color image of size 
N×N', denoted as H

^
 , as a pure imaginary quaternion matrix, represented as follows:

{ }ˆ ˆˆ 1,..., ,  1,...,N N
nnh n N n N′×

′ ′ ′= ∈ = = ，H  ,                                          (10)

where the element h
^
nn' of the matrix H

^
 is a pure imaginary quaternion, with its three imaginary parts representing 

the R, G, and B color data of the pixel. 
By utilizing (9), we define the quaternion bilateral convolution for the QResNet model. First, we define a qua-

ternion bilateral convolution kernel of size L×L' :

{ } × 1,..., ,  1,...,L L
llw l L l L′

′ ′ ′= ∈ = = ，w  ,                                           (11)

where the element wll' of the quaternion convolution kernel w is a general quaternion. Then, we assume the row 
and column strides for the image convolution are denoted as t and tʹ, respectively. In this case, the quaternion 
bilateral convolution operation is defined as follows:

{ } ( 1) ( 1)* ˆ ˆˆ̂ N L N L
t t

mmf
′ ′− −
′   + × +   

′⊗ ⊗ = = ∈w H w F  ,                                        (12)

1

0 0

1 1ˆ
| |

L
mm ll

L

l l ll
f w

w

′−−
′ ′

′= = ′
= ∑ ∑ ( )( )

ˆ
mt l m t l llh w∗

′ ′ ′ ′+ + , 1,..., 1,  1,..., 1N L N L
t tm m ′ ′− −

′   ′= + = +     ,              (13)

where, | wll' | is the magnitude of wll' , computed according to (8), ∙ is a downward rounding operation.
As shown in the above equations, multiple layers of quaternion bilateral convolution operations are stacked 

sequentially, as each convolutional layer outputs a pure imaginary quaternion matrix.
For complex numbers, the rotation of a vector is described as the multiplication of complex numbers in a 

two-dimensional plane. Similarly, for quaternions, the bilateral multiplication of a pure imaginary quaternion and 
a general quaternion describes the scaling transformation and rotational transformation of a three-dimensional 
vector [4]. To illustrate the impact of bilateral convolution on the scaling and rotational transformations of an 
image, we express an element of the quaternion convolution kernel w = wr + wii + wj j + wkk as a quaternion char-
acterized by its magnitude s and three angles θ, ϕ, φ, as follows:



79

Journal of Computers Vol. 36 No. 1, February 2025

cos sin [ cos sin ( cos sin )]{ }w i j ks θ θ φ φ ϕ ϕ+ += +  ,                                         (14)

where sR+ and θ, ϕ, φ[−π/2, −π/2]. Each convolution kernel element w has four trainable parameters: s, θ, ϕ 
and φ. If we set ϕ = arg cos( 3 /3) and φ = π / 4, the three imaginary axes values of the quaternion w become 
equal. In this case, (14) simplifies to a form with two trainable parameters, s and θ, as follows:

3cos sin ( )
3

w i j ks θ θ
 

+ + + 
 

=  .                                                   (15)

If we set θ = arg cos(1/2), the four axes values of this quaternion become equal, and (15) further simplifies to 
a form with a single trainable parameter, s, as follows:

   (1 )
2
sw i j k+ + +=  .                                                               (16)

The three convolution kernel elements described in (14)-(16) provide three degrees of freedom for training 
the QResNet model. Ablation experiments revealed the following insights: First, the model achieves the highest 
test recognition accuracy when the quaternion convolution kernel elements use the four trainable parameters s, 
θ, ϕ and φ described in (14). However, this configuration also results in the highest network complexity. Second, 
when the quaternion convolution kernel elements employ the two trainable parameters s, θ, as described in (15), 
the model requires approximately half the number of parameters compared to the corresponding real-number 
network. This approach significantly reduces the algorithm complexity with only a slight performance decrease. 
Lastly, the model’s recognition accuracy noticeably declines when using kernel elements with a single trainable 
parameter s, as described in (16). Therefore, considering efficiency and complexity based on theoretical analysis 
and experimental results, we selected the two trainable parameters s and θ described in (15) as the quaternion 
convolution kernel elements for the QResNet models.

4.2   Quaternionic Residual Network Structure

Table 1. Network architecture of QResNet models (Image size: 32 × 32)

Network 
layer

Output
size Stride Convolutional kernel

QResNet18 QResNet34 QResNet50 QResNet101 QResNet152

conv1 3×32×32, 16 1 3×3, 16
1 3×3, max pooling

conv2_x 3×32×32, 16 1
3 3 16

2
3 3 16

× 
× × 

，

，

3 3 16
3

3 3 16
× 

× × 

，

，

1 1 16
33 3 16

1 1, 64

× 
  ×× 
 × 

，

，

1 1 16
33 3 16

1 1, 64

× 
  ×× 
 × 

，

，

1 1 16
33 3 16

1 1, 64

× 
  ×× 
 × 

，

，

conv3_x 3×16×16, 32 2
3 3 32

2
3 3 32

× 
× × 

，

，

3 3 32
4

3 3 32
× 

× × 

，

，

1 1 32
43 3 32

1 1, 128

× 
  ×× 
 × 

，

，

1 1 32
43 3 32

1 1, 128

× 
  ×× 
 × 

，

，

1 1 32
83 3 32

1 1, 128

× 
  ×× 
 × 

，

，

conv4_x 3×8×8, 64 2
3 3 64

2
3 3 64

× 
× × 

，

，

3 3 64
6

3 3 64
× 

× × 

，

，

1 1 64
63 3 64

1 1, 256

× 
  ×× 
 × 

，

，

1 1 64
233 3 64

1 1, 256

× 
  ×× 
 × 

，

，

1 1 64
363 3 64

1 1, 256

× 
  ×× 
 × 

，

，

conv5_x 3×4×4, 128 2
3 3 128

2
3 3 128

× 
× × 

，

，

3 3 128
3

3 3 128
× 

× × 

，

，

1 1 128
33 3 128

1 1, 512

× 
  ×× 
 × 

，

，

1 1 128
33 3 128

1 1, 512

× 
  ×× 
 × 

，

，

1 1 128
33 3 128

1 1, 512

× 
  ×× 
 × 

，

，

Pooling 3×1×1, 128 global average pooling, dropout
Output number of categories
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We constructed five QResNet models: QResNet-18, QResNet-34, QResNet-50, QResNet-101, and QResNet-152, 
using quaternion bilateral convolution. Table 1 presents the specific network architecture parameters for each 
model. Square brackets in the table are used to denote residual blocks. 

The specific steps for setting the network parameters of these models are as follows.
(1) The Conv1 layer adopts a 3×3 kernel size with 64 filters, based on the structural parameters of the re-

al-number ResNet-18 network. The total number of parameters for this layer is calculated as 3×3×64 = 576.
(2) We initialize the quaternion network with the same number of parameters as the real-number network. For 

the QResNet-18 model, using quaternion convolution kernel elements with two trainable parameters s and θ, as 
described in (15), the number of filters in the Conv1 layer can be set to 32. This configuration yields 3×3×2×32 = 
576 parameters, maintaining equivalence with the real-number network.

(3) To exploit the enhanced feature extraction capability of quaternion bilateral convolution, we further reduce 
the number of quaternion convolution filters. Setting the Conv1 layer to 16 filters results in 3×3×2×16=288 pa-
rameters, effectively halving the parameter count compared to the corresponding real-number network layer.

(4) This parameter reduction approach is systematically applied to the remaining convolutional layers and oth-
er QResNet models, leading to the final network structures outlined in Table 1.

4.3   QResNet Residual Blocks

The residual blocks in the QResNet models are designed as an improvement over the real-number residual 
blocks [9], tailored specifically for quaternion deep residual networks. Unlike the Rectified Linear Unit (ReLU) 
activation function, the Sigmoid Linear Unit (SiLU) activation function offers smoother and more continuous 
characteristics, which help mitigate prevent neuron death. As a result, the SiLU activation function is used in the 
residual blocks of our QResNet models to improve model performance and training efficiency. Additionally, the 
ReLU activation function is retained at the output of the entire residual block to prevent gradient vanishing.

Fig. 1 shows the residual blocks in the QResNet models. The QResNet-18 and QResNet-34 networks utilize 
an improved BasicBlock structure as shown in Fig. 1(a), where each stage consists of two BasicBlocks. In con-
trast, the QResNet-50, QResNet-101, and QResNet-152 networks adopt an improved BottleNeck structure as 
shown in Fig. 1(b), where each stage consists of three BottleNecks. At the end of the network, the final feature 
maps undergo a global average pooling to reduce spatial dimensions to a single value. Subsequently, these fea-
ture maps pass through a dropout layer followed by the output layer, as detailed in Table 1.

Quaternion bilateral convolution

Quaternion batch normalization

QSiLu

Quaternion bilateral convolution

Quaternion batch normalization

QReLu

H( ) F( )q q q= +

q

q

       

Quaternion bilateral convolution

Quaternion batch normalization

QSiLu

Quaternion bilateral convolution

Quaternion batch normalization

QReLu

Quaternion bilateral convolution

Quaternion batch normalization

QSiLu

H( ) F( )q q q= +

q

q

 (a) Improved BasicBlock structure                             (b) Improved BottleNeck structure

Fig. 1. QResNet residual blocks
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The QResNet model outputs a purely imaginary quaternion matrix after the bilateral convolution, allowing a 
single activation function to process the three imaginary channels simultaneously. The QReLu and QSiLu activa-
tion functions are defined as follows:

i j kˆQReLu( ) ReLu( ) ReLu( ) ReLu( )i j k= + +q q q q  ,                                       (17)

i j kˆQSi Lu( ) Si Lu( ) Si Lu( ) Si Lu( )i j k= + +q q q q  .                                        (18)

4.4   Quaternion L1 Regularization

Real-number neural networks typically employ the L2 norm [17] as a regularizer. However, for quaternion 
weights, direct norm calculation is infeasible due to the presence of imaginary components. To address this, 
existing literature treats the four components of quaternion weights as separate real numbers and applies regular-
ization methods like L1, L2, or L1/2 norms to these real-number components [9, 22-24]. However, these methods 
quadruple the parameter count and introduce redundancy among the components. To overcome these issues, we 
propose a novel quaternion L1 regularization method. This approach computes the magnitude of each quaternion 
parameter and then combines all the magnitudes to calculate the L1 norm, which is given by,

1L ( ) ( )
w

l w
∈

= ∑
σ

σ  .                                                               (19)

In this method, the magnitude |l(w)| of the quaternion weight w is calculated using (8). This approach allows 
the network to learn fewer quaternion weights, thereby reducing the number of parameters and lowering the 
model complexity.

The parameter optimization process incorporates quaternion L1 regularization into the network training, and it 
is expressed as follows:

* ( ) ( )
1

1

1arg min ( , ( ; )) L ( )
T t t

t
H

T
ξ λ

=
= +∑ y x

σ
σ σ σ  ,                                        (20)

where ξ(∙) denotes the loss function, T is the number of training samples in a batch, H(·) represents the quaterni-
on residual network to be learned, and σ denotes its network parameters.

4.5   Quaternion Pooling

In quaternion residual networks, performing max pooling on individual channels, as done in real-number net-
works, is not meaningful because it would mix the values of different color layers, leading to a loss of color con-
text information. Instead, we apply pooling by maximizing the magnitudes of pixels within a given submatrix. 
This approach preserves color context information and achieves good recognition results. For a pooling block 
ˆ K K ′×q  in the quaternion output matrix with a size of K×K', the result of magnitude-max pooling is given by,

max
ˆˆ

ˆ arg max
K Kq

q
′×∈

=
q

q̂  ,                                                              (21)

where | q^ | represents the magnitude of the quaternion q^ as described in (8).

4.6   Quaternion Batch Normalization

Quaternion batch normalization (QBN) differs from real-valued batch normalization in how it calculates the 
mean and variance. Given T as the number of training samples in a batch, the mean (QE) and variance (QV) of 
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all the purely imaginary quaternion matrices q 1
ˆ ˆ̂{ ,... }T=M q q  are calculated as follows:

 q
1

1ˆ ˆ( )
T

t
t

QE
T =

= ∑M q  ,                                                                 (22)

q
ˆ( )QV =M q

1

1 ˆˆ( ( ))
T

t
t

QE
T =

−∑ q M *
q

ˆˆ( ( ))t QE−q M  .                                        (23)

Therefore, the QBN of the quaternion matrix q
ˆˆt ∈q M  is defined as follows:

q

q

ˆˆ ( ) ˆˆ( ) ( ) 1,...,
ˆ( )

t
t

QE
QBN t T

QV
γ

ε

−
= + =

+

q M
q

M
，β   ,                                          (24)

where γ represents the scaling factor as a scalar, β^ represents the shifting scale as a purely imaginary quaternion 
matrix, and a small non-zero value ε is added for numerical stability. Both γ and β^ are trainable parameters that 
are updated during the training process, adapting to changes in the network weights.

5   Experiments

5.1   Experimental Setup

We conducted experiments on the Cifar-10, Cifar-100 [18], and Oxford 102 Flowers [20] datasets to evaluate the 
effectiveness of the QResNet models. The Cifar-10 and Cifar-100 datasets consist of color images with 10 and 
100 categories, respectively, each containing 50,000 training samples and 10,000 test samples. Model hyperpa-
rameter tuning was performed on the training set. The Oxford 102 flowers dataset contains color images of flow-
ers across 102 categories, comprising a total of 8189 images. From the dataset, 6849 images were selected for 
training, 910 images for testing, and the remaining 430 images for validation and hyperparameter tuning.

The experimental were conducted on a computer equipped with an Intel Xeon(R) Gold 6271C 2.60Hz CPU, 
NVIDIA GeForce RTX 4090(24GB) GPU × 2, and 128GB RAM. We used Python 3.10 for the software experi-
ment. To enhance model accuracy, various data augmentation techniques were applied during training, including 
horizontal flipping, color jittering, random erasing, and rotation. All models were trained using the cross-entropy 
loss function and the SGD optimization algorithm. The initial learning rate was set to 0.001, with a scheduling 
strategy employed to gradually decrease the learning rate during training. The models were trained for 300 ep-
ochs with a batch size of 128, and additional hyperparameters were fine-tuned separately for each network.

5.2   Ablation Experiments

The influence of quaternion convolution kernels.  We conducted experiments to evaluate the impact of the 
number of the trainable parameters in the quaternion convolution kernel elements of our models. The QResNet 
models utilized two parameters s and φ as trainable parameters for each element of the quaternion convolution 
kernel, as described in (15). When all four parameters, s, θ, ϕ, and φ, were employed, as described in (14), these 
networks were referred to as QResNet(s, θ, ϕ, φ) models. We compared the classification performance of the re-
al-number ResNet, QResNet(s, θ, ϕ, φ), and QResNet models using the Cifar-100 dataset.

Table 2 presents the experimental results, where the number of parameters denotes the count of non-zero 
parameters in the trained model. The test loss and the test accuracy represent the average loss value and recog-
nition accuracy on the test set, respectively. As discussed in Section 3.1, the number of training parameters set 
for the QResNet(s, θ, ϕ, φ) models is approximately similar to their corresponding real-number ResNet models. 
However, due to the lightweight architecture of QResNet, the parameter count in QResNet models is rough-
ly reduced to half of that in the real-number ResNet models. As shown in Table 2, the non-zero parameters in 
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the QResNet models decrease to about 1/4 to 1/2 of those in their corresponding real-number ResNet models 
after training. Despite this reduction, the QResNet models maintain comparable test recognition accuracy to 
QResNet(s, θ, ϕ, φ) models, demonstrating that QResNet effectively enhances image recognition rates while 
minimizing algorithm complexity.

Table 2. Comparison of model performance with different convolutional kernels (Cifar-100 dataset)

Model Cifar-100
Test loss Test accuracy (%) Number of parameters

ResNet-18 0.8426 75.93% 11,173,962
QResNet-18(s, θ, ϕ, φ) 0.4922 83.11% 5,731,266

QResNet-18 0.5026 82.89% 2,865,600
ResNet-34 0.8210 76.30% 21,282,122

QResNet-34(s, θ, ϕ, φ) 0.4831 83.47% 10,796,480
QResNet-34 0.4981 83.30% 5,398208
ResNet-50 0.7161 77.71% 25,041,482

QResNet-50(s, θ, ϕ, φ) 0.4547 84.31% 24,926,712
QResNet-50 0.4939 83.92% 13,963,456
ResNet-101 0.6901 79.97% 44,033,610

QResNet-101(s, θ, ϕ, φ) 0.4074 86.11%. 43,905,344
QResNet-101 0.4202 85.62% 26,452,672
ResNet-152 0.7103 78.23% 59,677,258

QResNet-152(s, θ, ϕ, φ) 0.3509 88.32% 59,182,592
QResNet-152 0.3538 88.06% 36,591,296

Fig. 2. Test recognition accuracy of models corresponding to different convolutional kernels (Cifar-100 dataset)

Fig. 2 depicts the recognition accuracy curves on the test set of the real-number ResNet-152, QResNet-152(s, 
θ, ϕ, φ), and QResNet-152 models on the Cifar-100 dataset. It is evident that both the QResNet-152(s, θ, ϕ, φ) 
and QResNet-152 models achieve significantly higher recognition accuracy on the test set compared to the re-
al-number ResNet-152 network, further confirming the effectiveness of the QResNet models. On the other hand, 
the QResNet(s, θ, ϕ, φ) models utilize quaternion convolution kernels with four parameters, which yields slight-
ly higher recognition accuracy. However, this comes at the cost of increased algorithm complexity, making it a 
viable choice for specific application scenarios.
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The Influence of Quaternion Regularization Terms.  In Section 4.4, the current regularization strategy for 
training quaternion neural networks treats each of the four components of quaternion weights as individual re-
al-number weights. It then calculates the L1 or L2 norm of all the weights to obtain a regularization term. For 
comparison, if the QResNet model’s regularization term adopts the L1 or L2 norm of individual real-number 
components, these can be denoted as QResNet(realL1) and QResNet(realL2) models, respectively. We per-
formed experiments on the Cifar-100 dataset to compare the classification performance of the QResNet(realL1), 
QResNet(realL2), and QResNet models, thereby validating the effectiveness of the proposed quaternion L1 regu-
larization strategy.

Table 3. Comparison of model performance with different regularization terms (Cifar-100 dataset)

Model
Cifar-100

Training loss
 

Training accuracy 
(%)

Test loss Test accuracy 
(%)

Time
(ms/frame)

QResNet-18(realL2) 0.1012 97.58 0.6417 78.34 4.6
QResNet-18(realL1) 0.2122 92.63 0.5389 81.42 2.9

QResNet-18 0.3493 90.48 0.5026 82.89 2.6
QResNet-34(realL2) 0.0746 98.16 0.6212 78.65 5.5
QResNet-34(realL1) 0.1479 94.88 0.5298 82.16 3.7

QResNet-34 0.2775 92.48 0.4981 83.30 3.3
QResNet-50(realL2) 0.0506 98.83 0.6194 79.49 6.3
QResNet-50(realL1) 0.1418 95.24 0.4957 82.83 5.4

QResNet-50 0.2389 93.67 0.4939 83.92 4.9
QResNet-101(realL2) 0.0926 97.63 0.5808 80.64 8.9
QResNet-101(realL1) 0.1376 95.39 0.4756 84.04 7.4

QResNet-101 0.1695 94.26 0.4202 85.62 7.1
QResNet-152(realL2) 0.1073 97.16 0.5750 80.68 10.7
QResNet-152(realL1) 0.1179 96.10 0.4203 85.73 9.3

QResNet-152 0.2178 94.86 0.3538 88.06 9.1

Fig. 3. Test recognition accuracy of models corresponding to different regularization terms (Cifar-100 dataset)

Table 3 shows that the proposed quaternion L1 regularization outperforms the realL1 and realL2 regularization 
in terms of recognition accuracy on both the training and test sets. The theoretical analysis suggests that this is 
mainly because realL2 regularization tends to smooth parameter solutions but does not promote parameter spar-
sity. In contrast, while realL1 regularization achieves sparse solutions, it disrupts the balance among color com-
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ponents by adjusting each quaternion component individually. The proposed quaternion L1 regularization calcu-
lates the L2 norm for quaternion components first and then applies the L1 norm to these L2 norms. This approach 
preserves the color information balance for each pixel and reduces the overall feature complexity of the image, 
improving generalization and effectively suppressing overfitting. Additionally, Table 3 shows that QResNet mod-
els with quaternion L1 regularization have the lowest time overhead per test image, further demonstrating the 
effectiveness of this strategy.

Fig. 3 illustrates the curves of the test recognition accuracy of the models with different regularization methods 
on the Cifar-100 dataset. It can be observed that the QResNet-152 model consistently outperforms the QResNet-
152(realL2) model. As training epochs increase, the QResNet-152(realL2) model shows signs of early saturation 
due to overfitting. In contrast, both the QResNet-152 and QResNet-152(realL1) models effectively mitigate over-
fitting, leading to continued performance improvement beyond 150 training epochs. Notably, the QResNet-152 
model achieves the highest performance. This underscores the superior effectiveness of the proposed quaternion 
L1 regularization strategy employed in QResNet models.

5.3   Performance Comparison between QResNet Models and Real-number ResNet Networks

After 300 training epochs, the average loss values and image recognition accuracies for each model on the train-
ing and testing datasets are shown in Table 4 and Table 5 respectively.

Table 4. Performance comparison between QResNets and real-number ResNets on the training set

Model Cifar-10 Cifar-100 Oxford 102 flowers
Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)

ResNet-18 0.0461 98.87 0.4506 87.73. 0.0583 98.49
QResNet-18 0.0421 99.01 0.3493 90.48 0.0447 98.92
ResNet-34 0.0461 98.88 0.4465 88.03 0.0525 98.63

QResNet-34 0.0346 99.23 0.2775 92.48 0.0421 99.02
ResNet-50 0.0466 98.85 0.4218 88.56 0.0464 98.86

QResNet-50 0.0306 99.39 0.2389 93.67 0.0395 99.08
ResNet-101 0.0479 98.79 0.3253 89.83 0.0447 98.92

QResNet-101 0.0299 99.42 0.1695 94.26 0.0361 99.19
ResNet-152 0.0612 98.42 0.3590 90.25 0.0461 98.88

QResNet-152 0.0292 99.46 0.2178 94.86 0.0339 99.26

Table 5. Performance comparison between QResNets and real-number ResNets on the test set

Model Cifar-10 Cifar-100 Oxford 102 flowers
Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)

ResNet-18 0.2331 92.87 0.8426 75.93 0.1267 96.53
QResNet-18 0.1728 94.30 0.5026 82.89 0.1023 97.14
ResNet-34 0.2327 92.96 0.8210 76.30 0.1006 97.18

QResNet-34 0.1767 94.59 0.4981 83.30 0.0980 97.23
ResNet-50 0.2252 93.12 0.7161 77.71 0.0804 97.48

QResNet-50 0.1545 94.74 0.4939 83.92 0.0773 97.89
ResNet-101 0.2386 93.25 0.6901 79.97 0.0848 97.87

QResNet-101 0.1280 95.73 0.4202 85.62 0.0544 98.57
ResNet-152 0.2521 93.11 0.7103 78.23 0.0993 97.25

QResNet-152 0.1186 96.12 0.3538 88.06 0.0362 99.18

As illustrated in Table 4 and Table 5, the QResNet-152 model achieves impressive training recognition ac-
curacies of 99.46% on the Cifar-10, 94.86% on the Cifar-100, and 99.26% on the Oxford 102 flowers dataset. 
Correspondingly, the test recognition accuracies are 96.12%, 88.06%, and 99.18%, respectively. These results 
suggest that the QResNet models outperform their real-number ResNet counterparts with the same depth in both 
training and test performance, demonstrating the effectiveness of quaternion-based enhancements in deep residu-
al networks.

Furthermore, the QResNet-152 model outperforms the QResNet-18 model in testing recognition accura-
cy across the Cifar-10, Cifar-100, and Oxford 102 flowers datasets, with improvements of 1.82%, 5.17%, and 
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2.04%, respectively. These results, shown in Table 5, indicate that the classification performance of QResNet 
models enhances with increased model depth, further demonstrating the scalability and effectiveness of the pro-
posed quaternion-based residual networks.

Interestingly, the recognition accuracy of the real-number ResNet model on the Oxford 102 flowers dataset 
decreases when the network depth reaches 152 layers. This decline is mainly due to the extensive parameter 
scale of the real-number residual network. In contrast, the QResNet models exhibit a different trend, with the 
QResNet-152 model maintaining high recognition accuracy even at greater depths. This stability is attributed 
to the QResNet framework, where each convolutional layer contains roughly half the number of parameters 
compared to real-number residual networks, significantly reducing the total number of trainable parameters. 
Furthermore, the quaternion L1 regularization enhances parameter sparsity after training, effectively minimizing 
overfitting and contributing to improved model performance.

5.4   Comparative Performance Analysis of QResNet Models and Other Neural Networks

The QResNet models proposed in this paper leverage quaternion algebra to enhance residual networks for image 
recognition tasks. To assess the performance of our models, we conducted comparative experiments with vari-
ous advanced network models, including improved ResNet models, existing quaternion-based networks, and the 
relatively new CNN-based model PathNet [10]. The selected improved ResNet models include DenseNet [12], 
S-DenseNet [13], and Sparse DenseNet [14]. Existing quaternion neural networks are relatively scarce, but nota-
ble ones include QCNN_v1 (6 layers) and QCNN_v2 (8 layers) proposed by X.-Y. Zhu [16], a quaternion convo-
lutional network with an attention mechanism by Q.-L. Yin [19], and two quaternion residual networks with 13 
and 110 layers introduced by C. J. Gaudet [21].

Table 6 presents the performance comparison between the QResNet models and these existing neural net-
works on the experimental datasets. A dash “-” in the table indicates that the corresponding algorithm did not 
provide experiments or data on the specified database. This comprehensive evaluation highlights the comparative 
strengths of the QResNet models in enhancing image recognition performance.

Table 6. Performance comparison of QResNet models with existing algorithms

Model Network layer Dataset
Cifar-10 Cifar-100 Oxford 102 flowers

PathNet 16 95.16 76.02 54.06
DenseNet-40 40 93.00 72.45 -
DenseNet-100 100 94.23 76.21 -
S-DenseNet 86 94.83 85.38 -

Sparse DenseNet 40 93.65 72.89 -
QCNN_v1 6 77.78 - -
QCNN_v2 8 - - 76.95
Ref. [19] 6 85.37 - -

Ref. [21]_v1 13 93.23 69.41 -
Ref. [21]_v2 110 94.56 73.99 -
QResNet-18 18 94.30 82.89 97.14
QResNet-34 34 94.59 83.30 97.23
QResNet-50 50 94.74 83.92 97.89
QResNet-101 101 95.73 85.62 98.57
QResNet-152 152 96.12 88.06 99.18

As shown in Table 6, while the CNN-based improved model PathNet achieves high recognition accuracy on 
the Cifar-10 test set, its performance on the Cifar-100 and Oxford 102 flowers datasets is comparatively poor. 
This suggests that PathNet is more suited for small-scale image classification tasks. A similar issue is observed 
with the DenseNet and Sparse DenseNet models. Among the improved models based on ResNet, the S-ResNet 
model demonstrates the best performance.

Among quaternion-based image recognition algorithms, QCNN, the first quaternion convolutional neural net-
work model, shows poor recognition performance on the Cifar-10 and Oxford 102 flowers datasets. The model 
presented in Ref. [19] enhances QCNN by incorporating an attention mechanism, resulting in improved perfor-
mance on the Cifar-10 dataset compared to QCNN. The quaternion residual neural network proposed in Ref. [21] 
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further enhances recognition accuracy on the Cifar-10 dataset, surpassing the model in Ref. [19]. However, its 
performance on the Cifar-100 dataset remains suboptimal.

Table 6 demonstrates that the QResNet models proposed in this paper achieve superior image recognition per-
formance, surpassing the existing neural networks reported in the literature. Although both the QResNet models 
and the model presented in Ref. [21] are residual quaternion neural networks, they differ significantly in their 
approaches. The model in Ref. [21] performs quaternion convolution using the quaternion unilateral multipli-
cation described in equation (6) and incorporates a fourth-dimensional feature by adding grayscale information 
to the RGB channels. This additional dimension introduces considerable redundancy, negatively affecting the 
algorithm’s performance. In contrast, the QResNet models use quaternion bilateral multiplication, as described in 
equation (9), which preserves the pure imaginary quaternion nature of the input without the need for a fourth-di-
mensional feature. Furthermore, the integration of quaternion L1 regularization, quaternion batch normalization, 
and quaternion pooling in the proposed QResNet models further enhances their performance, making them more 
efficient and effective.

The comparison highlights that the incorporation of fourth-dimensional information in existing quaternion 
residual networks introduces information redundancy, negatively impacting model performance. In contrast, 
QResNet models utilize quaternion bilateral convolution and purely imaginary quaternions to represent the RGB 
colors of images, ensuring that the final image features remain strictly imaginary quaternions. This representation 
offers a more effective and natural depiction of color image attributes. Furthermore, QResNet models restrict 
the quaternion convolution kernels to two trainable parameters, significantly reducing computational complexi-
ty. This approach minimizes the risk of overfitting while maintaining sufficient degrees of freedom for learning 
convolution kernels. Additionally, the quaternion L1 regularization exploits the algebraic properties of quaterni-
ons, treating each quaternion as a single entity. This method enhances sparsity by reducing convolutional kernel 
parameters while maintaining the balance of color information for individual pixels. Combined with carefully 
designed model structures, residual blocks, pooling, and normalization, the QResNet models achieve superior 
recognition accuracy while lowering algorithmic complexity.

6   Conclusion

This study presents five QResNet models: QResNet-18, QResNet-34, QResNet-50, QResNet-101, and 
QResNet-152. The model design incorporates various advanced features, including lightweight structures, qua-
ternion residual blocks, quaternion bilateral convolution, quaternion pooling, quaternion batch normalization, 
and quaternion L1 regularization. The QResNet models represent the RGB color images using purely imaginary 
quaternions and utilize quaternion bilateral multiplication for convolution, effectively preserving color structural 
information. This approach reduces the number of convolutional parameters to approximately half compared to 
real-number networks, thereby decreasing computational complexity. Furthermore, the quaternion L1 regulariza-
tion enhances sparsity, mitigating overfitting. The QResNet-152 model demonstrates significant improvements in 
test recognition accuracy over real-number residual networks of the same depth, achieving increases of 3.01%, 
9.83%, and 1.93% on the Cifar-10, Cifar-100, and Oxford 102 flowers datasets, respectively. A current limita-
tion of the algorithm is its relatively large number of network parameters. Future work will focus on simplifying 
model parameters, extending quaternion algebra to additional network architectures, and applying these advance-
ments to broader image processing tasks, such as color image object detection and scene text localization.

7   Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 62061024, No. 62176110, No. 
61562058).

References

[1]	 W.R. Hamilton, Lectures on quaternions: containing a systematic statement of a new mathematical method, 1st ed., 
Hodges and Smith, Whittaker & Co., MacMillan & Co., Dublin, 1853.



88

Color Image Recognition Models based on Quaternion Residual Networks

[2]	 B. Xian, M.S. de Queiroz, D. Dawson, I. Walker, Task-space tracking control of robot manipulators via quaternion feed-
back, IEEE Transactions on Robotics and Automation 20(1)(2004) 160-167.

[3]	 D. Pavllo, C. Feichtenhofer, M. Auli, D. Grangier, Modeling human motion with quaternion-based neural networks, 
International Journal of Computer Vision 128(10)(2020) 855-872.

[4]	 J. Vince. Quaternions for computer graphics, 1st ed., Springer, London, 2011.
[5]	 X.-Y. Zhang, X.-Y. Zhou, M.-X. Lin, J. Sun, Shufflenet: an extremely efficient convolutional neural network for mobile 

devices, in: Proc. 2018 the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[6]	 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. <https://arxiv.org/

abs/1409.1556>, 2014 (accessed 22.12.2023).
[7]	 A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. 

2012 the 25th Advances in Neural Information Processing Systems (NIPS), 2012.
[8]	 C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on 

learning, in: Proc. 2017 the 31st AAAI Conference on Artificial Intelligence, 2017.
[9]	 K.-M. He, X.-Y. Zhang, S.-Q. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. 2016 the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[10]	 Z.-H. Fan, D.-B. Sun, H.-Y. Yu, W.-D. Zhang, PathNet: a novel multi‑pathway convolutional neural network 

for few‑shot image classification from scratch, Multimedia Systems 30(2)(2024) 1-13.
[11]	 R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in: Proc. 2013 International 

Conference on Machine Learning, 2013.
[12]	 G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proc. 2017 the 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[13]	 C.-Y. Yu, X. He, H.-T. Ma, X. Qi, J.-R. Lu, Y.-H. Zhao, S-DenseNet: a DenseNet compression model based on convolu-

tion grouping strategy using Skyline method, IEEE Access 7(2019) 183604-183613.
[14]	 D. O’Neill, B. Xue, M.-J. Zhang, Evolutionary neural architecture search for high-dimensional skip-connection struc-

tures on DenseNet style networks, IEEE Transactions on Evolutionary Computation 25(6)(2021) 1118-1132.
[15]	 G. Altamirano-gomez, C. Gershenson, Quaternion convolutional neural networks: current advances and future direc-

tions, Advances in Applied Clifford Algebras 34(3)(2024) 1-63.
[16]	 X.-Y. Zhu, Y. Xu, H.-T. Xu, C.-J. Chen, Quaternion convolutional neural networks, in: Proc. 2018 the European 

Conference on Computer Vision (ECCV), 2018.
[17]	 K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional 

nets. <https://arxiv.org/abs/1405.3531>, 2014 (accessed 15.01.2024).
[18]	 M.E. Nilsback, A. Zisserman, Automated flower classification over a large number of classes, in: Proc. 2008 the Sixth 

Indian Conference on Computer Vision, Graphics & Image Processing, 2008.
[19]	 Q.-L. Yin, J.-W. Wang, X.-Y. Luo, J.-T. Zhai, S.K. Jha, Y.Q. Shi, Quaternion convolutional neural network for color im-

age classification and forensics, IEEE Access 7(2019) 20293-20301.
[20]	 A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, Handbook of Systemic Autoimmune 

Diseases 1(4)(2009) 1-58.
[21]	 C.J. Gaudet, A.S. Maida, Deep quaternion networks, in: Proc. 2018 International Joint Conference on Neural Networks, 

2018.
[22]	 J.-W. Wang, T. Li, X.-Y. Luo, Y.-Q. Shi, S.K. Jha, Identifying computer generated images based on quaternion central 

moments in color quaternion wavelet domain, IEEE Transactions on Circuits and Systems for Video Technology 29(9)
(2018) 2775-2785.

[23]	 Y. Xu, L.-C. Yu, H.-T. Xu, H. Zhang, T. Nguyen, Vector sparse representation of color image using quaternion matrix 
analysis, IEEE Transactions on Image Processing 24(4)(2015) 1315-1329.

[24]	 Z.-G. Xu, F.-X. Yuan, H.-L. Zhu, Y.-M. Xu, Color image super-resolution reconstruction based on quaternion sparse 
regularization, Journal of Huazhong University of Science & Technology (Natural Science Edition) 46(1)(2018) 75-80.


