
Journal of Computers Vol. 36 No. 1, February 2025, pp. 89-112
https://doi.org/10.63367/199115992025023601007

89* Corresponding Author

Regularized Total Least Squares Broad Learning System for Regression

Ke-Jia Xiong1, Guan-Ci Yang2*, Tao Zhou1, and Zhen-Qiang Xie3

1 State Key Laboratory of Public Big Data, Guizhou University,
Guiyang City 550025, Guizhou Province, China

2 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University,
Guiyang City 550025, Guizhou Province, China

3 National Engineering Research Center of Big Data Application to The Improvement of Governance Capacity,
Guiyang City 550000, Guizhou Province, China
369115381@qq.com, gcyang@gzu.edu.cn, 15284755690@qq.com, xzq521@163.com

Received 8 May 2024; Revised 13 September 2024; Accepted 27 September 2024

Abstract. The Broad Learning System (BLS) has been extensively developed and applied across various
fields due to its significant advantages, including high efficiency, strong generality, and scalability. However,
in practical applications where both inputs and outputs are contaminated by noise, traditional BLS demon-
strates suboptimal performance in handling sample data. This study introduces a novel regularized total least
squares broad learning system (RTLS-BLS) designed to enhance the robustness of BLS when noisy values
are present in both the input and the output of the training set. Initially, the k-support norm is integrated into
the BLS-based autoencoder (BLS-AE), embedded within BLS, to extract robust features from the original
input data. The BLS-AE equipped with the k-support norm effectively addresses or mitigates issues related
to overly sparse (based on L1-norm) or overly dense (based on L2-norm) regularization of extracted features.
Subsequently, regularized total least squares (RTLS) are employed to assess the output weights of BLS, fur-
ther enhancing its robustness. Moreover, simultaneous perturbation measures for the coefficient matrix and the
output are provided. Experimental results from two function approximation tasks, eight benchmark regression
tasks, and two network interface flow datasets demonstrate that the proposed RTLS-BLS achieves significant-
ly robust performance under noisy conditions compared to other methods.

Keywords: broad learning system, regularized total least squares, k-support norm, BLS-based autoencoder

1 Introduction

Over the past decades, Deep Learning (DL) has exhibited excellent performance across various domains such as
computer vision [1], natural language processing [2], speech recognition [3], recommendation systems [4], and
autonomous driving [5]. DL techniques are a type of representation-learning approach that involves multiple lay-
ers of representation. These layers are created by combining simple yet non-linear modules, each responsible for
transforming the representation at one level (starting from the initial input) into a slightly more abstract represen-
tation at a higher level [6]. However, the training process of DL models typically involves massive training data
to tune the model parameters iteratively and complicated network architecture. The time-consuming iterative ad-
justment process poses a significant challenge to its application in scenarios with high real-time requirements and
limited computational resources.

To address the limitations of deep learning models, Chen et al. [7] proposed a novel shallow neural network
based on random vector functional link neural networks (RVFLNN), termed the broad learning system (BLS).
This model utilizes a flattened network architecture, significantly enhancing the speed and efficiency of data
modeling. The sparse autoencoder is employed to fine-tune input samples and extract sparse features. These
features are then used to generate enhancement nodes, with randomly generated weights, biases, and activation

90

Regularized Total Least Squares Broad Learning System for Regression

functions. The output weights are determined by computing the pseudo-inverse of the combined output matrix
from the feature and enhancement layers. Chen et al. [7] describe three incremental learning strategies within
BLS: 1) increasing the number of feature mapping nodes, 2) adding additional enhancement nodes, and 3) ex-
panding the input data. Notably, the BLS model allows for incremental reconstruction without the need for re-
training, should network expansion become necessary.

To leverage the powerful feature extraction capabilities of convolutional neural networks (CNN), a cascade
CNN was integrated into the broad learning system (BLS) by Chen et al. [8]. This integration facilitates the gen-
eration of a series of convolutional feature mapping nodes through the use of convolution and pooling operations.
Yang et al. [9] proposed the CNN-based broad learning system, which employs CNN to replace the traditional
feature extraction methods and utilizes principal component analysis (PCA) for data dimensionality reduction.
Li Ting et al. [10] integrated CNN with the Adam algorithm, leveraging CNN for feature extraction while em-
ploying the Adam algorithm to update the feature weights. Additionally, for tasks involving fuzzy uncertain data
modeling, the Takagi-Sugeno (TS) fuzzy system was embedded into BLS to enhance its fuzzy inference capa-
bilities. In Fuzzy BLS [11], feature nodes were replaced with fuzzy subsystems, and the k-means algorithm was
employed to determine both the number of fuzzy rules and the centers of the Gaussian membership functions.
Huang et al. proposed a BLS with manifold regularized sparse features (BLS-MS) [12]. This model employs
a manifold regularized sparse autoencoder based on extreme learning machine (MS-ELM-AE) for the feature
mapping process. Ding et al. [13] introduced a greedy learning strategy and proposed the greedy broad learning
system. This approach addresses the issue of redundancy in hidden layer neurons within the BLS framework,
offering an effective solution to optimize the network structure. In an effort to enrich the diversity of BLS vari-
ants, Zhang et al. [14] introduced four novel variants of BLS. These variants are characterized by distinct types
of nodes (feature nodes and enhancement nodes) and various cascading manners (pyramid, dropout, and dense).
Zhao et al. [15] proposed a semi-supervised broad learning system (SS-BLS), which constructs a Laplacian
matrix using a manifold regularization framework. By combining feature nodes, enhancement nodes, and the
Laplacian matrix to formulate the objective function, this method extends the application of BLS to semi-super-
vised learning tasks. Fan et al. [16] proposed a class-specific weighted broad learning system (CSWBLS), which
constructs the least squares error term on a class-specific basis and imposes weight constraints to modulate the
contribution of each class to the model, thereby enhancing the accuracy of heartbeat classification in medical
images. In [17] a Broad Learning System employing the maximum correlation criterion (C-BLS) along with its
corresponding training algorithm was presented to mitigate the negative effects of outliers on BLS performance.
Huang et al. [18] integrated random projection with residual reduction to generate enhancement nodes, thereby
proposing a novel bidirectional broad learning system (B-BLS). This approach not only enhances computational
efficiency but also effectively reduces the number of hidden layer nodes.

BLS has demonstrated outstanding performance in diverse real world data modeling tasks, such as predicting
the interactions between lncRNA and protein [19], wear fault diagnosis of aircraft engines [20], multi-step-ahead
wind speed prediction [21], emotion recognition [22], traffic predictors [23], etc.

The standard BLS typically assumes that the training data are noise-free. However, in many real-world scenar-
ios, the collected sample data may suffer from contamination caused by noise or outliers, leading to a significant
decline in the performance and stability of BLS. To enhance model robustness, Jin et al. [24] proposed a graph
regularized BLS (GRBLS) by incorporating manifold learning into the objective function of BLS. This approach
constrains the output weights to extract more discriminative information from image data, addressing the issue
of label noise in raw data. Feng et al. [25] employed the random perturbation approximation to discard features
that are not related to low-dimensional manifold embedding, thereby improving the robustness of BLS in chaotic
time series prediction. To enhance the stability and generalizability of BLS in modeling tasks involving uncertain
data, Jin et al. [26] introduced three robust versions of BLS (RBLS), each penalized by the L1 norm on the data
fidelity term, while the regularization terms are individually subjected to L1 norm, L2 norm, and elastic net regu-
larization, respectively. Guo et al. [27] introduced M-estimator robust learning techniques into the BLS. By inte-
grating diverse M-estimator cost functions and their corresponding weighting strategies, they performed inverse
weighting calculations on samples to mitigate or eliminate the adverse effects of outlier errors on the learning
model. In [28], a novel adaptive weight generation mechanism based on imbalanced data distribution was de-
signed, assigning weights to each training sample through a generalized weighting scheme. This approach aims
to enhance the classification accuracy of BLS on imbalanced datasets, ensuring more effective handling of the
prevalent class imbalance issues and improving overall predictive performance.

The aforementioned BLS variants exhibit superior robustness compared to the original BLS when data sam-
ples are corrupted by noise or outliers. However, there still exists a significant limitation: the existing BLS-based
methods primarily focus on the approximation problem of sample data contaminated by either input or output

91

Journal of Computers Vol. 36 No. 1, February 2025

noises, rather than tackling the error-in-variables (EIV) model that involves noise in both input and output val-
ues. To address this issue, a novel regularized total least squares broad learning system (RTLS-BLS) is proposed
in this study. In RTLS-BLS, the k-support norm is ingeniously integrated into the objective function of BLS-AE,
serving as a powerful tool for extracting robust features from raw input data. Simultaneously, by incorporating
regularized total least squares, the weight estimation process is further optimized, ensuring the model’s stability
and accuracy in noisy environments. In summary, the primary contributions of this study can be summarized as
follows:

1) To extract high-level abstract features from input data, a k-support norm regularization term is embedded
into the loss function of the BLS-based autoencoder, resulting in the k-support norm regularized BLS-AE (KSP-
BLS-AE). Subsequently, KSP-BLS-AE is cleverly integrated into the BLS system, serving as a key component
for extracting robust features from raw input data. This design enhances the feature extraction performance of the
BLS model in noisy environments.

2) The RTLS-BLS model integrates the essence of BLS with the advantages of regularized total least squares.
It first employs the BLS concept to select the hidden layer weights, then utilizes regularized total least squares to
estimate the output weights, achieving an efficient approximation of the EIV model. Additionally, by accounting
for potential disturbances in both the hidden outputs and observed values, the model is optimized to enhance its
robustness and adaptability, ensuring more stable and accurate performance when dealing with complex data.

3) Extensive experiments were conducted to validate the performance of our proposed RTLS-BLS in regres-
sion tasks with noise in both input and output samples. The experimental results indicate that RTLS-BLS exhibits
superior performance compared to other benchmark methods.

The rest of the paper is organized as follows: Chapter 2 briefly reviews BLS and BLS-based autoencoder.
Chapter 3 presents the proposed KSP-BLS-AE and RTLS-BLS algorithm. The test performance of RTLS-BLS
on various benchmarks is detailed in Chapter 4. Finally, Chapter 5 concludes this article.

2 Related Work

This section provides a brief review of the classical BLS framework and the single hidden layer autoencoder
constructed based on BLS (BLS-AE).

2.1 Broad Learning System

The Broad Learning System (BLS) is an innovative shallow neural network that is based on the random vector
functional-link neural network (RVFLNN). Its primary objective is to address the challenges of high compu-
tational requirements and lengthy training times in deep learning [7]. As depicted in Fig. 1, the hidden layer of
BLS consists of a single-layer structure comprising the feature layer and the enhancement layer.

Fig. 1. The network structure of BLS [7]

92

Regularized Total Least Squares Broad Learning System for Regression

Assuming a training dataset { } (), N d cX Y × +∈ . For n feature mappings, each mapping generates k nodes, can be
represented as the equation of the form:

(), 1, 2,..., .
i ii i e eZ XW i nφ β= + = (1)

where Wei
 and βei

 are randomly generated weights and biases, respectively. ϕi(∙) is a nonlinear activation function,
such as ReLU or Tanh.

Assuming the network contains m groups of enhancement nodes, each group contains p nodes. The jth group
of enhancement nodes is represented as

(), 1, 2,..., .
j j

n
j j h hH Z W j mξ β= + = (2)

where Z n = [Z1, Z2, ..., Zn], Whj
 and βhj

 are randomly generated weights and biases, respectively. ξj(∙) is a nonlinear
activation function. Denote all the enhancement nodes as Hm = [H1, H2, ... , Hm].

Therefore, the broad learning system can be represented as

1 2 1 2 .[, ,..., | , ,...,] [|]m n m m
n mY Z Z Z H H H W Z H W= = (3)

where the W m = [Zn|Hm]+Y is the output weights calculated by generalized inverse with the ridge regression ap-
proximation [7].

2.2 BLS-Based Autoencoder

An autoencoder (AE) [29] is recognized as an unsupervised learning model, primarily designed to learn the rep-
resentation of input information. In this model, the input data itself serves as the reconstruction target. The model
consists of two principal components: the encoder and the decoder. The encoder is used to map the input data to
a lower-dimensional feature space, while the decoder is employed to map these low-dimensional feature vectors
back to the original data space.

Based on BLS theory, BLS-AE [30] incorporates randomly generated hidden layer, and its output weight ma-
trix tends to produce results similar to the input. Fig. 2 illustrates the fundamental structure of a BLS-based auto-
encoder. BLS-AE can also be stacked to create a deep architecture.

Fig. 2. The network structure of BLS-based autoencoder

Given the input data X, BLS-AE generates the feature layer and the enhancement layer through Eq.(1) and
Eq.(2), respectively.

93

Journal of Computers Vol. 36 No. 1, February 2025

The feature layer and enhancement layer are combined to form the hidden layer, which is expressed as fol-
lows:

1 2 1 2[, ,..., | , ,...,] [|]. n m
n mA Z Z Z H H H Z H= = (4)

Ridge regression is employed to achieve rapid reconstruction. The output weight matrix W is optimized by
solving the subsequent minimization problem:

2 2

2 2
.arg min :

W
AW X Wλ− + (5)

By setting the gradient to zero, the W is approximated as

1() .T TW I A A A Xλ −= + (6)

Afterwards, the original data X can be projected using W T. In other words, XW T is the learned representation.

2.3 The Key Research Problem

Existing variants of the BLS are predicated on the assumption that input variables are completely accurate, with
noise only present in the output variables, as depicted in Fig. 3. In practice, however, noise not only affects the
output variables but also impacts the input variables, corresponding to an EIV model. Consequently, developing
a robust BLS framework capable of universally handling the EIV model becomes the central research focus of
this paper. This is critically important for enhancing the accuracy of data processing and model predictions.

In the RTLS-BLS framework, we initially embed the KSP-BLS-AE into the BLS for feature extraction, en-
hancing the model’s ability to extract features in noisy environments. The KSP-BLS-AE incorporates a k-support
norm regularization term into the objective function of the BLS-based autoencoder, facilitating the extraction
of more robust features. The solution process for KSP-BLS-AE efficiently leverages the Alternating Direction
Method of Multipliers (ADMM) and the precision of the k-support norm proximal operator, ensuring the accu-
racy and robustness of feature extraction. Subsequently, we employ regularized total least squares (R-TLS) to
estimate the output weights, thereby achieving an effective approximation of the EIV model. Furthermore, to
enhance the model’s robustness and adaptability, potential disturbances in the hidden output matrix and observed
values are explicitly considered and incorporated into the model optimization process, ensuring that RTLS-BLS
exhibits robust and accurate performance when confronted with complex real-world data.

BLS variants RTLS-BLS

Enhancement nodes Feature nodes

sparse
autoencoder

X

Y+ΔY

Enhancement nodes Feature nodes

KSP-BLS-AE

Y+ΔYoutput noise: ΔY

intput noise: ΔX X+ΔX

Fig. 3. The difference between the proposed RTLS-BLS framework and other variants of BLS

94

Regularized Total Least Squares Broad Learning System for Regression

3 The Proposed Total Least Squares Broad Learning System

3.1 k-Support Norm Regularized BLS-Based Autoencoder

In this subsection, the k-support norm regularized BLS-based autoencoder (KSP-BLS-AE) is introduced to ex-
tract more effective features and enhance the model’s robustness. The k-support norm is considered the tightest
relaxation of sparsity and L2 constraints. It overcomes the limitations of existing matrix norms in terms of sparsi-
ty and/or low-rank, including: 1) excessive sparsity/density, and/or 2) column independence [31].

Theorems 1. [32] for "W∈d , let 0| |W ↓→ −∞ , t is {0, ..., j−1} the unique integer that satisfies the following
conditions:

1 .1| | | | | |
1

d

j t i j t
i j t

W W W
t

↓ ↓ ↓
− − −

= −

> >
+ ∑ (7)

In that case, the k-support norm can be expressed as:

11
2 2 2

1

1| .| ((| |) (| |))
1

j t d
sp
k i i

i i k j
W W W

t

− −
↓ ↓

= = −

= +
+∑ ∑‖ (8)

where | |iW ↓ represents the value of the ith element of vector W after sorting it in descending order.
The optimization model of KSP-BLS-AE, based on the k-support norm regularization term, can be denoted by

2 2
2

.arg min : ()
2

sp

k
W

AW X Wλ
− + (9)

where X is the input data, A is the output of the hidden layer, λ is a regularization parameter. W is the output layer
weight that needs to be determined.

We use the ADMM [33] algorithm and proximity operator to solve Eq.(9). Introducing an intermediate vari-
able o in Eq.(9), we transform W=o into a constrained model:

2 2
2W

min || || (|| ||) . . .
2

sp
kAW X o s t W oλ

− + = (10)

According to the ADMM optimization method, we first use the Lagrange method to transform the constrained
Eq.(10) into an unconstrained model:

2 2
2(, ,) || || (|| ||) , .

2
sp
kL W o AW X o W oλµ µ= − + + < − > (11)

where μ is the Lagrange multiplier that needs to be iterated. Then, we add a penalty term 2
2|| ||

2
W oρ

− to Eq.(11),

resulting in the augmented Lagrange function for the original problem:

2 2
2

2 2 2
2 2

2
2 2
2

(, ,) || || (|| ||)
2

|| || || || (|| ||)
2 2

|| |||| || .

,

2 2

sp
k

sp
k

L W o AW X o W o

W o AW X o

W o

ρ
λµ µ

ρ λ

µρ µ
ρ ρ

= − + + < − >

+ − = − +

+ − + −

 (12)

95

Journal of Computers Vol. 36 No. 1, February 2025

where ρ > 0 is penalty parameter.
Taking the derivatives with respect to W, o, and μ , and setting them equal to zero, we obtain:

1 1 1(2) (2).i T T i iW A A I A X oρ ρ µ− − −= + + − (13)

2

1

|| ||
2

().
sp
k

i
i io prox Wλ

ρ

µ
ρ

−

⋅
= + (14)

1 ().i i i iW oµ µ ρ−= + − (15)

where 2|| ||
2

()
sp
k

prox λ
ρ
⋅

⋅ is proximity operator. The proximity operator method and its corollaries are represented as fol-

lows.

Lemmas 1. [32] If function 21() (|| ||)
2

f x x
ρ

= , the proximal operator of it is given by:

,

, 1,..., 1
1

() , ,...,
(1) 1

0, 1,...,

t l
f i

i j t

T
prox x z i j t l

l j t
i l d

ρ
ρ

ρ ρ

 = − − +


= − = − − + + + +
 = +



 (16)

where 0 1 ,: | | , : , : , :
l

d t l i
i j l

z x z z T z↓
+

= −

= = +∞ = −∞ = ∑ , and r∈{0, ..., j −1}, l∈{j, ..., d} satisfies:

,
1 .1 1

1 (1) 1 1
t l

j t j t

T
z z

l j tρ ρ ρ ρ− − −> >
+ − + + + + +

 (17)

,
1(
.

1) 1
t l

l l

T
z z

l j tρ ρ +> >
− + + + +

 (18)

Table 1 exhibits pseudo-code of the k-support norm regularized BLS-Based Autoencoder (KSP-BLS-AE).

Table 1. k-support norm regularized BLS-based autoencoder

Algorithm 1.
Input The training data X, activation function φ and ξ ;
Output The abstract feature XW T ;
1 While i ≤ n
2 Randomly construct weights Wei

 and biases βei
 ;

3 Calculate the feature nodes by Eq.(1);
4 End While
5 Set the feature group Z n = [Z1, Z2, ..., Zn]
6 While j ≤ m
7 Randomly construct weights Whj

 and biases βhj
 ;

8 Calculate the enhancement nodes by Eq.(2);
9 End While
10 Set the enhancement group Hm = [H1, H2, ... , Hm]
11 Splicing all the nodes to get the hidden layer nodes by Eq.(4);
12 While t ≤ MaxIt
13 Update W according to Eq.(13);
14 Update o according to Eq.(14);
15 Update μ according to Eq.(15);
16 End While

96

Regularized Total Least Squares Broad Learning System for Regression

3.2 Regularized Total Least Squares Broad Learning System

As noise is commonly present in both the input and output variables in practical applications, the existing BLS
methods only consider the case of noise in the output variables. To address this issue, we introduce a regularized
total least squares broad learning system (RTLS-BLS) to handle the errors-in-variables (EIV) model.

Considering a set of N training pairs 1(,)N d c
i i ix y = ∈ ×  with input noise ∆xi and output noise ∆yi , where

i = 1, ..., N. The BLS with a nonconstant bounded feature mapping φ and activation function ξ can be equivalent-
ly denoted as:

1

1

**

1 1

**

1 1

(()) (())

(()) (;{ , , }).

i j j

i j j

m qn k

i e e nk j h h
i j

m qn k

i e e nk j h h
i j

y y W x x W W Z Z W

W x x W W x x W

ϕ β ζ β

ϕ β ζ ϕ β

+
= =

+
= =

+ ∆ = + ∆ + + + ∆ +

= + ∆ + + + ∆

∑ ∑

∑ ∑
 (19)

where
1 1

[(()),..., (())]
nk nke e e eZ Z x x W x x Wϕ β ϕ β+ ∆ = + ∆ + + ∆ + , and output layer weights W = (W1, ..., Wnk+mq), Wei

and βei are the randomly generated weights and biases of the feature nodes, Whj and βhj are the randomly generated
weights and biases of the enhancement nodes. Eq.(19) can be written compactly as

() .A A W Y Y+ ∆ = + ∆ (20)

where A is the output of the hidden layer, ∆A is the hidden perturbation matrix.
Now, Eq.(19) is transformed into how to compute the output weight vector W under the linear system with

the unknown perturbation matrix ∆A and ∆Y. As is well known, BLS determines the output weight matrix W by
solving the linear system.

.AW Y Y= + ∆ (21)

The least squares method is utilized to minimize the 2-norm of the residual ∆Y = Y −AW. However, in Eq.(19),
both A and Y are affected by perturbations, and relying solely on the least squares method may not sufficiently ac-
count for generalization. The Total Least Squares (TLS) [34] can effectively address Eq.(19). Taking into account
that the singular values of [A Y] may gradually diminish towards zero, implying an ill-posed problem, we employ
regularized TLS (R-TLS) [35], which integrates Tikhonov regularization into TLS to tackle the ill-posed nature
of the problem. Hence, we employ R-TLS to determine the optimal output weights W as well as the perturbation
matrices ∆A and ∆Y, such that

2, ,
min || [] || () , || || . FW A Y

A Y subject to A A W Y Y W δ
∆ ∆

∆ ∆ + ∆ = + ∆ ≤ (22)

where ||·||F is the Frobenius norm, δ is a given positive constant.

2|| [] || ([] []) ()
() () .

T T T T
F

T T

A Y tr A Y A Y tr A A Y Y
vec A vec A Y Y
∆ ∆ = ∆ ∆ ⋅ ∆ ∆ = ∆ ∆ + ∆ ∆

= ∆ ∆ + ∆ ∆
 (23)

The corresponding Lagrange multiplier formulation is

2 2
2(, , , ,) (|| ||) 2 (). T T

A A AL E Y W E E Y Y W Y Y AW AWρ µ ρ δ µ∆ = + ∆ ∆ + − + + ∆ − −∆ (24)

where ρ and μ are Lagrange multiplier, EA = vec(∆A) and ∆AW= (W T⊗I) EA , ⊗ represents the Kronecker-Zehfuss
product, and vec(∙) is the flattening transformation of a matrix.

Let H =[ATA+λI ATY], where λ is the regularization parameter. Its SVD decomposition is given by H =U ∑ V,
where ∑=diag(δ1, ..., δL+s). We can partition ∑ and V as

97

Journal of Computers Vol. 36 No. 1, February 2025

11 11

1 222

2

2
0

, .0
V L

s
V

s

L
V V

L L s
V s

   
   =  

∑
∑ = ∑ (25)

If V22 is nonsingular, then the output weight matrix is given by

1
12 22 .Ŵ V V −= − (26)

Taking the partial derivatives of EA, ∆Y, and μ with respect to Eq.(24), and setting them to zero, we can rear-
range to obtain:

1.()(1)TY Y AW W W −∆ = − − + (27)

1()(1) .TA Y AW W W W−∆ = − + (28)

1.()(1)TY AW W Wµ −= − + (29)

Therefore, the correction matrix is given by

ˆ()Y Y AW∆ = − − ˆ(1 TW+ 1ˆ) .W − (30)

ˆ()A Y AW∆ = − ˆ(1 TW+ 1ˆ)W − ˆ .W (31)

Table 2 presents the pseudocode for the regularized total least squares broad learning system (RTLS-BLS).

Table 2. Regularized total least squares broad learning system

Algorithm 2.
Input The training dataset:{ } (), N d cX Y × +∈ , activation function φ and ξ ;
Output W, ∆A, ∆Y;
1 While i ≤ n
2 Obtain XW T according to Algorithm 1;
3 Calculate Zi = φ(XW T) ;
4 End While;
5 The feature mapping nodes as Z n

 = [Z1, ..., Zn];
6 While j ≤ m
7 Randomly construct weights Whj

 and biases βhj
 ;

8 Calculate the enhancement nodes by Eq.(2) and make the concatenation;
9 End While
10 Splicing all the nodes to get the hidden layer output matrix A by Eq.(4);

11 Performing the SVD decomposition on the matrix H =[ATA+λI ATY] =U ∑ V T. Divide ∑ and V by
Eq.(25);

12 If V22 is nonsingular then
13 Update W according to Eq.(26);
14 Update ∆Y according to Eq.(30);
15 Update ∆A according to Eq.(31);
16 End If

3.3 Connections to Other Methods

In both the standard BLS and robust BLS variants such as GRBLS [24] and weighted BLS [28], the least squares

98

Regularized Total Least Squares Broad Learning System for Regression

method or weighted least squares method is employed as the objective function. In cases where only the output
variable contains noise, the model parameters estimated via least squares possess desirable statistical properties
such as being unbiased, consistent, and having minimal variance. However, in practical scenarios, the coefficient
matrix is also affected by noise. If least squares is applied directly under these conditions, the estimated parame-
ters no longer exhibit optimal statistical characteristics.

Three versions of RBLS [26] (L1RBLS, L2RBLS, and ENRBLS) utilize the L1 loss function, which in certain
scenarios offers advantages over the least squares method, such as when a sparse solution is required. However,
since the L1 norm is non-differentiable at zero, solving problems that minimize the L1 loss function is generally
more complex than solving least squares problems. Additionally, RBLS only considers scenarios where noise
is present in the output variables, without accounting for cases where both input and output variables are noisy.
Consequently, RBLS does not achieve satisfactory results when dealing with EIV models.

The RTLS-BLS method we propose employs total least squares as the objective function to establish an EIV
model, taking into account noise in the output variables as well as in the coefficient matrix. Additionally, RTLS-
BLS utilizes KSP-BLS-AE for feature extraction, which offers greater robustness compared to the sparse autoen-
coder used in other BLS implementations. This increased robustness stems from the k-support norm used in KSP-
BLS-AE, which overcomes the limitations of the L1 norm in terms of sparsity and/or low-rank. Consequently,
RTLS-BLS exhibits significant advantages when handling data samples with noise in both inputs and outputs.
The differences between RTLS-BLS and other variants of BLS are shown in Table 3.

Table 3. Differences between BLS variants

Algorithms Autoencoder Loss function Regularization
term

Whether to con-
sider input noise

Whether to con-
sider output noise

BLS sparse
autoencoder least squares L2 regularization No No

GRBLS sparse
autoencoder least squares manifold regular-

ization No Yes

L1RBLS sparse
autoencoder L1 loss function L1 regularization No Yes

L2RBLS sparse
autoencoder L1 loss function L2 regularization No Yes

ENRBLS sparse
autoencoder L1 loss function elastic-net regu-

larization No Yes

Weighted BLS sparse
autoencoder

weighted least
squares L2 regularization No Yes

RTLS-BLS KSP-BLA-AE total least squares Tikhonov regular-
ization Yes Yes

4 Experimental

4.1 Experimental Setup

Parameter Setting. Several experiments were conducted to verify the performance of the proposed RTLS-BLS.
The RTLS-BLS was compared with the standard BLS [7], BLS with L1 regularization (denoted as BLS-L1),
RBLS with L1 and L2 regularizations [26] (denoted as L1RBLS and L2RBLS, respectively), and broad stochas-
tic configuration networks [36] (denoted as BSCN). All programs were implemented using MATLAB 2022b on
a PC equipped with an Intel(R) Core(TM) i7-10875H CPU at 2.30GHz, an NVIDIA GeForce RTX 2060, and
16GB of RAM. The primary parameter configurations for each model are outlined as follows.

Grid search is employed to determine the optimal number of feature mapping nodes Nw, and the number of
mapping nodes per group Nf. The grid search range of Nf spans from 1 to 15 with a step of 1. Similarly, the grid
search range for Nw spans from 1 to 20 with a step of 1. The number of enhanced nodes Ne is set at a fixed val-
ue of 100. The output weights of BLS-L1 is evaluated using Eq.(32). The number of enhanced node groups in
BSCN is set to 1, with each group consisting of 50 enhanced nodes. The tolerance threshold is fixed at 1e-10, and
the maximum number of candidate nodes is set to 200. A set of positive scalars, denoted by γ , is defined within
the range of {1,5,10,…,30,50,100,150,200}. The regularization parameter λ is set to 2Q, and the grid search range

99

Journal of Computers Vol. 36 No. 1, February 2025

for Q spans from -8 to 8 with a step size of 1.
To ensure fairness in the experiment, the sigmoidal function (Eq.(33)) is selected as the activation function for

BLS, BLS-L1, BSCN, L1RBLS, L2RBLS, and RTLS-BLS.

2
2 1 .arg min || || || ||

W
AW Y Wλ− + (32)

1() .
1 xf x

e−=
+

 (33)

Benchmark Datasets. To assess the regression performance of the RTLS-BLS, experiments were conducted on
two function approximation problems, represented by Eq.(34) and Eq.(35), as well as on several real-world data-
sets sourced from the KEEL and UCI repositories. The specifications of these benchmark regression datasets are
listed in Table 4. To demonstrate the effectiveness of the proposed RTLS-BLS for the Errors-in-Variables (EIV)
model, noises and outliers were introduced into the training dataset in accordance with Eq.(36) and Eq.(37),
while the test dataset was maintained uncontaminated.

Table 4. Specifications of benchmark datasets

Datasets Type Attributes Outputs Training Test
concrete Regression 8 1 721 309

ele-2 Regression 4 1 740 316
friedman Regression 5 1 840 360
plastic Regression 2 1 1155 495
stock Regression 9 1 665 285
laser Regression 4 1 696 297

autoMPG8 Regression 7 1 275 117
wankara Regression 9 1 1127 482

Function approximation

1 (2), [0,1].y sin x xπ= ∈ (34)

In this experiment, we randomly generated 600 training and 600 test samples from the uniform distribution in
the range of [0, 1], respectively.

2
(3) , [4, 4].

3
sin xy x

x
= ∈ − (35)

For the second function approximation tasks, both the training and the test dataset consist of 1000 grid points
uniformly distributed over the interval [-4, 4].

Real-world datasets
For the real-world datasets, normalization preprocessing is applied to minimize the impact of varying data

scales, converting the input and output vectors into the [0, 1] range. Subsequently, the datasets are divided into
training and test sets, with 70% of the samples allocated to training and the remaining 30% reserved for testing
purposes.

Noise and outliers
To demonstrate the approximation effectiveness of the proposed RTLS-BLS for the Errors-in-Variables (EIV)

model, experiments were conducted using a subset of function approximation training samples, with 10% ran-
domly selected, as well as different proportions (10%, 20%, 30%, 40%) of the training samples from the real
dataset. The input and target outputs of the selected samples were preprocessed according to Eq.(36) and Eq.(37),
while the test dataset was kept unaffected.

, 1.0 0.5.i Outlier ix x rnd= + × − (36)

, 1.0 0.5.i Outlier iy y rnd= + × − (37)

100

Regularized Total Least Squares Broad Learning System for Regression

where, xi represents the attribute of the selected sample, while yi denotes the target output of the selected sample.
xi,Outlier and yi,outlier are used to represent an outlier, and rnd signifies a random number within the range (0,1).

Evaluation Indicator. In the evaluation of the proposed RTLS-BLS model, several widely recognized regres-
sion performance metrics were utilized, specifically mean absolute error (MAE) (Eq.(38)), root mean squared
error (RMSE) (Eq.(39)), mean squared error (MSE) (Eq.(40)), and determination coefficient (R2) (Eq.(41)).
Smaller values of MAE, MSE, and RMSE indicate higher accuracy in regression. The R2 value, ranging between
0 and 1, reflects the model fit, with values closer to 1 indicating better fit. To ensure experimental validity, the
RTLS-BLS model and relevant comparative models were independently executed 100 times. The generalization
capability of the proposed model was assessed by calculating the average values of the evaluation metrics and
their corresponding standard deviations.



1

1 | | .
N

i i
i

MAE y y
N =

= −∑ (38)



2

1

1 () .
N

i i
i

RMSE y y
N =

= −∑ (39)



2

1

1 () .
N

i i
i

MSE y y
N =

= −∑ (40)





2

2 1

2

1

()
1 .

()

N

i i
i
N

i i
i

y y
R

y y

=

=

−
= −

−

∑

∑
 (41)

where yi is the label of sample i, iy represents the regression result of sample i, N indicates the total number of
samples.

4.2 Experimental Results

Performance on The Function Approximation Problems. Table 5 presents the average test results for the
function approximation problem at a pollution rate of 10%. The values shown are the averages and standard
deviations of the evaluation metrics. From an examination of Table 5, it is observed that the RTLS-BLS model
achieves the smallest MAE, MSE, and RMSE values, as well as the largest R2 value among all models. These
findings suggest that the RTLS-BLS model surpasses other models in regression accuracy and exhibits a superior
approximation effect for the EIV model.

Table 5. Performance comparison of different models on function approximation with a contamination rate of 10%

y Algorithms MAE±STD RMSE±STD MSE±STD R2±STD

y1

BLS 0.0494±0.0043 0.0568±0.0046 0.0033±0.0005 0.9938±0.0010
BLS-L1 0.0453±0.0031 0.0562±0.0029 0.0032±0.0003 0.9939±0.0006
BSCN 0.0499±0.0012 0.0744±0.0025 0.0055±0.0004 0.9894±0.0007

L1RBLS 0.0428±0.0029 0.0554±0.0040 0.0031±0.0005 0.9941±0.0009
L2RBLS 0.0425±0.0023 0.0543±0.0023 0.0030±0.0003 0.9943±0.0005

RTLS-BLS 0.0418±0.0014 0.0527±0.0013 0.0028±0.0001 0.9947±0.0003

y2

BLS 0.0127±0.0087 0.0156±0.0094 0.0003±0.0005 0.9968±0.0044
BLS-L1 0.0185±0.0108 0.0230±0.0134 0.0007±0.0010 0.9933±0.0096
BSCN 0.0120±0.0009 0.0157±0.0012 0.0002±0.0001 0.9976±0.0003

L1RBLS 0.0125±0.0047 0.0158±0.0058 0.0003±0.0001 0.9973±0.0024
L2RBLS 0.0101±0.0031 0.0130±0.0036 0.0002±0.0001 0.9983±0.0015

RTLS-BLS 0.0086±0.0028 0.0115±0.0034 0.0001±0.0001 0.9986±0.0011

101

Journal of Computers Vol. 36 No. 1, February 2025

Additionally, Fig. 4 and Fig. 5 display the regression results for the function approximation problem at a pol-
lution rate of 10%. From these figures, it is observed that RTLS-BLS demonstrates a stronger fitting effect for
the problem. This enhanced performance is attributed to the integration of the BLS-based autoencoder with the
k-support norm, which enhances the robustness of feature extraction. Furthermore, the use of regularized total
least squares to calculate output weights facilitates a better fit for the EIV model.

 (a) Training samples and the target outputs (b) Test performance of the different algorithms

Fig. 4. Curves related to function y1 with the contamination rate 10%

 (a) Training samples and the target outputs (b) Test performance of the different algorithms

Fig. 5. Curves related to function y2 with the contamination rate 10%

Performance on the Real-World Datasets. The test results for MAE, RMSE, MSE, and R2 values, obtained
using various algorithms across different datasets and pollution rates, are presented in Table 6 to Table 9, with the
best results highlighted in bold. From these tables, the following conclusions can be drawn:

(1) Excellent performance has been achieved by the proposed RTLS-BLS among these algorithms. It has been
found that RTLS-BLS achieved the lowest MAE, RMSE, MSE, and the highest R2 across these datasets, indicat-
ing strong approximation capability for sample data with noise present in both input and output values.

(2) Higher values of MSE and RMSE, along with lower R2 values, were yielded by the standard BLS and
BSCN models compared to other models. These findings suggest that both the standard BLS and BSCN models
exhibit sensitivity to noise and outliers.

(3) The average test performance of L1RBLS, L2RBLS, and BLS-L1 on the four evaluation indicators are
consistently better than the standard BLS and BSCN models across different benchmark datasets. The observed
phenomenon implies that the L1 loss function is more robust and is generally less susceptible to the influence of
outliers compared with the L2 loss function.

102

Regularized Total Least Squares Broad Learning System for Regression

Based on the above analysis, we can conclude that among all the compared methods, the proposed RTLS-BLS
performs well for regression tasks with noisy input and output values.

In Fig. 6, we comprehensively present the performance evaluation results of six algorithms across eight
datasets with varying degrees of anomalies. It is evident that our proposed RTLS-BLS algorithm significantly
outperforms the other comparative methods in all test cases. The exceptional performance of RTLS-BLS is
primarily attributed to its innovative design, which skillfully utilizes regularized total least squares to estimate
output weights. This process not only thoroughly considers the impact of output noise ∆y but also, for the first
time, incorporates considerations of input noise ∆x. This allows the RTLS-BLS algorithm to more precisely adapt
to the EIV model, thereby displaying superior fitting capabilities and robustness when dealing with complex
datasets containing noise in both inputs and outputs. In contrast, other algorithms, focusing solely on handling
output noise ∆y, exhibit inadequate performance under such complex conditions, failing to achieve satisfactory
results.

 (a) concrete (b) ele-2

 (c) friedman (d) plastic

 (e) stock (f) laser

 (g) autoMPG8 (h) wankara

Fig. 6. Comparison testing RMSE on 8 data sets with different outlier level

103

Journal of Computers Vol. 36 No. 1, February 2025

To further demonstrate the advantages of RTLS-BLS, Fig. 7 clearly presents a comparison of the average
test RMSE for six algorithms across eight datasets with a contamination rate of 30%. The results show that our
proposed RTLS-BLS algorithm not only achieves lower RMSE values but also demonstrates faster convergence.
This advantage is primarily due to the KSP-BLS-AE feature extraction method employed in the RTLS-BLS
algorithm. Compared to the sparse autoencoders commonly used by other algorithms for feature extraction,
KSP-BLS-AE leverages its unique advantages to extract more robust features. Specifically, the k-support norm
mechanism built into KSP-BLS-AE effectively overcomes the limitations of traditional L1 norms in terms of
sparsity and/or low-rank characteristics, enabling the extraction of features that are not only sparse but also more
representative. This capability better addresses noise and outliers in data. It is this feature that endows the RTLS-
BLS algorithm with more efficient feature learning capabilities on complex datasets, thereby achieving faster
convergence and lower prediction errors.

 (a) concrete (b) ele-2

 (c) friedman (d) plastic

 (e) stock (f) laser

 (g) autoMPG8 (h) wankara

Fig. 7. Average test performance on regression datasets (Contamination rates=30%)

104

Regularized Total Least Squares Broad Learning System for Regression

To comprehensively validate the efficacy of the RTLS-BLS algorithm, Table 10 is meticulously designed to
compare RTLS-BLS with a series of other BLS variants on a benchmark dataset with a 10% contamination rate.
In this experiment, the maximum number of enhancement nodes was set to 300. The desired error tolerance ε was
adjusted based on the specific conditions of different datasets. Training was terminated upon reaching either the
desired error tolerance or the maximum number of enhancement nodes. From the data in Table 10, it is observed,
as expected, that different algorithms exhibit significant variations in training time and the number of nodes
in the enhancement layers when faced with diverse datasets. Notably, the RTLS-BLS algorithm consistently
displays the most streamlined configuration of hidden layer nodes across all evaluated datasets, directly reflecting
its network's compactness and efficiency. Although the training time of RTLS-BLS is slightly longer due to
the incorporation of the KSP-BLS-AE algorithm to enhance feature extraction robustness, this minor time
cost is undoubtedly justified by its significant advantages in improving network efficiency and reducing model
complexity. Overall, RTLS-BLS not only performs excellently in terms of efficiency but also provides robust
support for handling complex data with its more compact network structure.

Ablation Studies. To evaluate the contribution of various improvement components within the RTLS-BLS
model to the overall performance, ablation experiments were conducted on three datasets: concrete, friedman,
and autoMPG8. RTLS-BLS, an enhanced version of the standard BLS, focuses its core improvements on the
integration of the KSP-BLS-AE feature extraction module and the R-TLS output weight computation module.
The experimental results, summarized in Table 11, clearly reveal several key findings: First, the integration of the
KSP-BLS-AE module alone into BLS, leveraging its robust feature learning capabilities, significantly reduces the
Root Mean Square Error (RMSE) compared to the standard BLS model, demonstrating the direct contribution of
feature optimization to performance enhancement. Secondly, applying the R-TLS module alone to optimize out-
put weight calculations in BLS also achieves superior performance relative to the basic BLS model, highlighting
the effectiveness of the weight optimization strategy. Notably, although the individual applications of KSP-BLS-
AE and R-TLS each enhance BLS performance, their combined application in the RTLS-BLS model results in a
more significant performance leap, surpassing the effects achievable by using either module alone. These results
not only validate the rationality of the RTLS-BLS design concept but also fully demonstrate the tremendous
potential for overall performance improvement when its internal components work synergistically. Overall, the
results of the ablation experiments robustly support the significant contributions of the improvement components
in the RTLS-BLS model, showcasing its advantages and potential in handling Errors-in-Variables (EIV) models.

Forecasting Network Interface Flow. The experiment focuses on forecasting Network Interface Flow using
two distinct datasets: the core network traffic dataset of European cities and the academic backbone network traf-
fic dataset of the UK.

The core network traffic dataset of European cities captures the bit flow on the transatlantic link between 11
European cities during the period from June 7, 2005, 06:57, to July 31, 2005, 11:17. The data was sampled at a
frequency of every 5 minutes. For the experiment, we divided the data into a training set (July 1 to July 19, 2005)
and a test set (July 20 to July 28, 2005). In the experiment, the flow values within the time interval [T-11, T] were
utilized as features to predict the flow at time T+1.

The UK academic backbone traffic dataset encompasses the aggregated flow of the UK academic network
backbone spanning from November 19, 2004, 09:30, to January 27, 2005, 11:11. Sampling occurred at 5-minute
intervals. For our experiment, we employed the data from January 1 to January 19, 2005, as the training set and
the data from January 20 to January 27, 2005, as the test set. The flow values within the time range [T-11, T]
were employed as features to predict the flow at time T+1 in the experiment.

Table 12 and Table 13 present the test results obtained from the core network traffic dataset of European cities
and the academic backbone network traffic dataset of the UK, respectively. These results represent the average
values and standard deviations of various evaluation metrics. Upon examining Table 12 and Table 13, it is ob-
served that RTLS-BLS achieves the lowest MAE, MSE, RMSE, and the highest R2 value among all models. This
performance indicates that RTLS-BLS excels in forecasting network interface flow compared to other models.

Performance Analysis. The experiments cited above demonstrate that the proposed RTLS-BLS model has
achieved commendable results in handling errors-in-variables (EIV) models where both input and output values
are affected by noise. This success is attributed to the utilization of the KSP-BLS-AE within RTLS-BLS for fea-
ture extraction, which facilitates the extraction of more effective features and enhances robustness against noise.
Moreover, the use of regularized total least squares to evaluate the output weights of the hidden layer in RTLS-

105

Journal of Computers Vol. 36 No. 1, February 2025

BLS leads to improved fitting results for EIV models. In contrast to the least squares method, which solely con-
siders noise in the output values, regularized total least squares account for noise in both input and output values,
enabling RTLS-BLS to achieve superior fitting results for EIV models.

5 Conclusion

This paper proposes the RTLS-BLS to address the errors-in-variables (EIV) model in the presence of noisy
input and output values. The approximation problem of the EIV model is explored, and the utilization of the
RTLS-BLS algorithm is examined. The proposed method employs a k-support norm regularized BLS-based
Autoencoder for feature extraction, adopts the BLS approach for selecting hidden layer weights, and utilizes reg-
ularized total least squares to compute the output weight, accounting for perturbations in both the hidden output
matrix and output vector. Experimental results obtained from various function approximation problems and re-
al-world datasets demonstrate the favorable performance of the proposed RTLS-BLS method in handling regres-
sion tasks with noisy input and output.

Table 6. Test MAE values of all algorithms on different datasets

Datasets Algorithms Contamination rates (MAE±STD ×10−2)
10% 20% 30% 40%

concrete

BLS 6.94±0.31 7.74±0.37 8.76±0.40 9.35±0.40
BLS-L1 6.89±0.30 7.54±0.24 8.39±0.24 9.81±0.42
BSCN 6.99±0.35 7.81±0.33 8.51±0.43 9.08±0.38

L1RBLS 7.07±0.34 7.68±0.24 8.24±0.27 9.17±0.29
L2RBLS 7.05±0.34 7.60±0.23 8.35±0.35 8.96±0.25

RTLS-BLS 6.41±0.37 7.16±0.28 7.91±0.34 8.63±0.29

ele-2

BLS 1.59±0.10 2.96±0.12 2.63±0.09 3.79±0.13
BLS-L1 1.48±0.08 2.86±0.12 2.83±0.14 3.28±0.09
BSCN 1.90±0.14 3.26±0.18 2.99±0.23 4.06±0.29

L1RBLS 1.45±0.05 2.94±0.25 2.86±0.07 3.32±0.25
L2RBLS 1.46±0.05 2.81±0.16 3.13±0.16 3.29±0.11

RTLS-BLS 1.34±0.06 2.56±0.13 2.42±0.12 3.20±0.18

friedman

BLS 4.45±0.16 5.25±0.26 5.38±0.23 6.21±0.37
BLS-L1 4.47±0.21 4.89±0.22 5.28±0.24 5.58±0.19
BSCN 4.43±0.16 5.05±0.20 5.17±0.20 6.26±0.24

L1RBLS 4.68±0.23 5.04±0.26 5.56±0.24 5.75±0.32
L2RBLS 4.45±0.16 4.88±0.21 5.44±0.20 5.57±0.19

RTLS-BLS 4.24±0.15 4.63±0.18 5.05±0.13 5.44±0.22

plastic

BLS 12.02±0.05 14.18±0.67 15.28±0.35 17.12±0.42
BLS-L1 12.03±0.10 14.41±0.53 16.71±1.04 18.80±1.25
BSCN 12.24±0.12 13.51±0.12 14.61±0.20 16.50±0.26

L1RBLS 12.04±0.13 13.87±0.44 15.07±0.86 18.27±1.67
L2RBLS 12.19±0.22 13.84±0.40 15.46±0.83 17.36±1.30

RTLS-BLS 12.03±0.06 13.37±0.07 14.47±0.25 16.10±0.33

stock

BLS 3.75±0.16 4.42±0.18 4.54±0.25 5.11±0.18
BLS-L1 3.67±0.16 3.79±0.15 4.06±0.15 4.32±0.17
BSCN 3.89±0.18 4.31±0.24 4.73±0.29 4.99±0.25

L1RBLS 3.81±0.16 3.94±0.19 4.24±0.15 4.27±0.19
L2RBLS 3.72±0.17 3.78±0.13 4.09±0.16 4.21±0.19

RTLS-BLS 3.44±0.14 3.55±0.20 3.89±0.14 4.13±0.16

laser

BLS 2.09±0.17 2.09±0.17 2.62±0.22 3.53±0.19
BLS-L1 2.61±0.23 2.02±0.16 2.56±0.25 2.49±0.18
BSCN 2.43±0.22 3.06±0.49 2.97±0.33 3.61±0.29

L1RBLS 2.93±0.28 2.12±0.21 2.61±0.35 3.19±0.40
L2RBLS 3.00±0.24 2.17±0.27 2.52±0.27 2.48±0.17

RTLS-BLS 2.16±0.17 1.99±0.13 2.36±0.16 2.37±0.10

autoMPG8

BLS 5.91±0.35 6.00±0.39 7.00±0.37 7.65±0.41
BLS-L1 5.46±0.16 5.72±0.26 6.22±0.18 5.93±0.22
BSCN 6.10±0.32 6.76±0.41 7.63±0.48 9.24±0.80

L1RBLS 5.47±0.09 5.62±0.20 6.12±0.11 5.92±0.20
L2RBLS 5.46±0.17 5.42±0.14 6.22±0.15 6.03±0.12

RTLS-BLS 5.22±0.18 5.33±0.17 6.24±0.26 5.96±0.32

wankara

BLS 1.96±0.08 2.63±0.23 3.03±0.23 4.02±0.20
BLS-L1 1.85±0.07 1.96±0.12 2.34±0.12 3.73±0.14
BSCN 2.12±0.14 2.96±0.12 3.76±0.19 4.34±0.24

L1RBLS 1.82±0.06 1.91±0.11 2.37±0.15 3.56±0.16
L2RBLS 1.85±0.06 1.92±0.06 2.30±0.06 3.63±0.10

RTLS-BLS 1.72±0.06 1.86±0.08 2.26±0.10 3.32±0.11

106

Regularized Total Least Squares Broad Learning System for Regression

Table 7. Test RMSE values of all algorithms on different datasets

Datasets Algorithms Contamination rates (RMSE±STD ×10−2)
10% 20% 30% 40%

concrete

BLS 9.55±0.52 10.65±0.99 11.75±0.74 12.42±0.66
BLS-L1 9.18±0.38 9.75±0.34 10.89±0.53 12.44±0.52
BSCN 9.36±0.49 10.20±0.50 11.27±0.86 11.88±0.53

L1RBLS 9.41±0.45 9.83±0.28 10.41±0.32 11.67±0.35
L2RBLS 9.36±0.44 9.78±0.27 10.71±0.49 11.58±0.32

RTLS-BLS 8.56±0.53 9.30±0.33 10.12±0.49 11.05±0.33

ele-2

BLS 2.11±0.17 3.80±0.20 3.36±0.14 4.85±0.21
BLS-L1 1.86±0.08 3.65±0.15 3.48±0.13 4.34±0.17
BSCN 2.66±0.32 4.82±0.18 4.48±0.45 5.75±0.54

L1RBLS 1.81±0.06 3.83±0.38 3.46±0.07 4.32±0.48
L2RBLS 1.80±0.05 3.71±0.24 3.69±0.16 4.27±0.22

RTLS-BLS 1.76±0.09 3.33±0.14 3.09±0.13 4.18±0.21

friedman

BLS 5.77±0.21 6.86±0.42 7.15±0.32 8.30±0.73
BLS-L1 5.76±0.28 6.18±0.29 6.97±0.33 7.08±0.23
BSCN 5.73±0.22 6.49±0.29 6.91±0.29 8.14±0.36

L1RBLS 6.05±0.31 6.40±0.34 7.19±0.35 7.26±0.39
L2RBLS 5.73±0.24 6.17±0.27 7.05±0.25 7.09±0.22

RTLS-BLS 5.45±0.21 5.88±0.26 6.65±0.13 6.91±0.26

plastic

BLS 15.07±0.09 17.10±0.68 17.96±0.41 20.14±0.47
BLS-L1 15.11±0.12 17.41±0.55 19.64±1.17 22.02±1.39
BSCN 15.19±0.12 16.53±0.13 17.40±0.26 19.97±0.39

L1RBLS 15.09±0.13 16.96±0.48 17.94±1.00 21.50±1.84
L2RBLS 15.22±0.25 16.90±0.44 18.32±0.98 20.53±1.45

RTLS-BLS 14.87±0.04 16.21±0.07 17.09±0.28 19.01±0.32

stock

BLS 4.86±0.22 5.75±0.24 5.93±0.41 6.86±0.35
BLS-L1 4.76±0.19 4.87±0.18 5.35±0.19 5.47±0.18
BSCN 5.03±0.24 5.53±0.30 6.30±0.57 6.55±0.33

L1RBLS 4.88±0.19 5.00±0.24 5.48±0.19 5.39±0.21
L2RBLS 4.78±0.22 4.82±0.15 5.34±0.21 5.35±0.20

RTLS-BLS 4.43±0.19 4.55±0.22 5.05±0.20 5.22±0.20

laser

BLS 3.50±0.36 3.45±0.71 4.57±0.43 4.53±0.39
BLS-L1 3.98±0.34 3.04±0.36 4.19±0.40 4.01±0.21
BSCN 4.18±0.58 5.95±1.81 5.29±0.96 6.06±1.07

L1RBLS 4.35±0.46 3.21±0.46 4.32±0.54 5.22±0.62
L2RBLS 4.35±0.30 3.32±0.51 4.16±0.41 4.06±0.30

RTLS-BLS 3.31±0.18 2.89±0.15 3.77±0.27 3.90±0.16

autoMPG8

BLS 8.15±0.66 7.99±0.47 9.51±0.51 10.94±0.62
BLS-L1 7.33±0.23 7.44±0.33 8.52±0.21 8.60±0.25
BSCN 8.11±0.49 9.05±0.33 10.30±0.91 12.90±1.32

L1RBLS 7.23±0.12 7.32±0.23 8.40±0.15 8.56±0.24
L2RBLS 7.35±0.23 7.29±0.18 8.49±0.17 8.71±0.18

RTLS-BLS 6.95±0.18 7.00±0.26 8.40±0.23 8.56±0.34

wankara

BLS 2.64±0.15 3.56±0.39 4.20±0.46 5.10±0.25
BLS-L1 2.44±0.12 2.57±0.15 3.07±0.16 4.60±0.19
BSCN 3.22±0.83 4.33±0.79 5.46±0.62 6.60±1.02

L1RBLS 2.39±0.07 2.45±0.12 3.08±0.21 4.47±0.19
L2RBLS 2.43±0.08 2.45±0.07 2.98±0.09 4.45±0.11

RTLS-BLS 2.36±0.09 2.41±0.09 2.98±0.13 4.12±0.09

107

Journal of Computers Vol. 36 No. 1, February 2025

Table 8. Test MSE values of all algorithms on different datasets

Datasets Algorithms Contamination rates (MSE±STD ×10−3)
10% 20% 30% 40%

concrete

BLS 9.14±1.00 11.44±2.41 13.87±1.78 15.48±1.65
BLS-L1 8.45±0.69 9.51±0.66 11.92±1.20 15.50±1.31
BSCN 8.81±0.93 10.44±1.02 12.83±2.01 14.10±1.22

L1RBLS 8.94±0.86 9.71±0.55 10.82±0.67 13.60±0.81
L2RBLS 8.79±0.83 9.63±0.54 11.51±1.11 13.40±0.74

RTLS-BLS 7.33±0.89 8.72±0.61 10.32±0.99 12.19±0.72

ele-2

BLS 0.45±0.08 1.44±0.15 1.13±0.09 2.36±0.21
BLS-L1 0.35±0.03 1.33±0.11 1.21±0.09 1.88±0.15
BSCN 0.72±0.18 2.37±0.70 2.02±0.42 3.32±0.65

L1RBLS 0.33±0.02 1.48±0.30 1.20±0.05 1.89±0.47
L2RBLS 0.33±0.02 1.38±0.18 1.36±0.11 1.83±0.20

RTLS-BLS 0.31±0.03 1.11±0.09 0.96±0.08 1.74±0.18

friedman

BLS 3.33±0.24 4.71±0.58 5.10±0.46 6.93±1.31
BLS-L1 3.32±0.33 3.81±0.36 4.92±.46 5.01±0.32
BSCN 3.33±0.26 4.21±0.38 4.83±0.40 6.65±0.58

L1RBLS 3.73±0.38 4.12±0.44 5.16±0.51 5.30±0.57
L2RBLS 3.33±0.28 3.80±0.33 5.00±0.36 5.04±0.57

RTLS-BLS 3.01±0.23 3.46±0.31 4.40±0.18 4.83±0.36

plastic

BLS 22.71±0.28 29.30±2.42 32.32±1.53 40.59±1.94
BLS-L1 22.80±0.26 30.31±1.90 38.74±4.63 48.72±6.11
BSCN 23.11±0.35 27.33±0.44 30.30±0.89 39.94±1.61

L1RBLS 22.81±0.38 28.82±1.73 32.33±3.74 46.60±7.92
L2RBLS 23.21±0.76 28.61±1.52 33.71±3.73 42.40±6.02

RTLS-BLS 22.11±0.11 26.60±0.23 29.24±0.96 36.19±1.21

stock

BLS 2.42±0.21 3.31±0.28 3.53±0.52 4.69±0.49
BLS-L1 2.30±0.19 2.40±0.18 2.91±0.21 3.00±0.20
BSCN 2.51±0.24 3.14±0.34 4.03±0.81 4.34±0.44

L1RBLS 2.43±0.19 2.48±0.24 3.01±0.21 2.94±0.23
L2RBLS 2.33±0.21 2.32±0.15 2.91±0.23 2.86±0.21

RTLS-BLS 1.97±0.17 2.14±0.20 2.63±0.20 2.71±0.21

laser

BLS 1.18±0.26 1.24±0.57 2.12±0.40 2.07±0.36
BLS-L1 1.60±0.27 0.94±0.23 1.82±0.34 1.60±0.17
BSCN 1.80±0.51 4.54±1.31 2.91±1.11 3.83±1.61

L1RBLS 1.96±0.41 1.00±0.32 1.92±0.49 2.80±0.68
L2RBLS 1.92±0.26 1.10±0.36 1.74±0.36 1.70±0.25

RTLS-BLS 1.10±0.12 0.84±0.09 1.41±0.20 1.52±0.13

autoMPG8

BLS 6.69±1.14 6.41±0.76 9.07±0.98 12.01±1.35
BLS-L1 5.38±0.35 5.54±0.49 7.27±0.36 7.39±0.43
BSCN 6.60±0.80 8.23±1.24 10.69±2.18 16.80±3.47

L1RBLS 5.22±0.17 5.36±0.33 7.07±0.26 7.33±0.41
L2RBLS 5.40±0.34 5.31±0.27 7.21±0.28 7.59±0.31

RTLS-BLS 4.84±0.25 4.90±0.36 7.06±0.39 7.33±0.59

wankara

BLS 0.70±0.08 1.28±0.28 1.79±0.40 2.61±0.26
BLS-L1 0.60±0.06 0.66±0.08 0.95±0.10 2.12±0.18
BSCN 1.11±0.79 1.93±1.03 3.02±0.78 4.46±7.73

L1RBLS 0.57±0.03 0.60±0.06 0.95±0.13 2.00±0.17
L2RBLS 0.59±0.04 0.60±0.03 0.89±0.05 1.98±0.10

RTLS-BLS 0.56±0.04 0.58±0.04 0.88±0.07 1.70±0.08

108

Regularized Total Least Squares Broad Learning System for Regression

Table 9. Test R2 values of all algorithms on different datasets

Datasets Algorithms Contamination rates (R2±STD ×10−2)
10% 20% 30% 40%

concrete

BLS 80.09±2.17 74.97±5.27 68.28±4.06 66.91±3.53
BLS-L1 81.60±1.50 79.20±1.44 72.83±2.65 66.86±2.80
BSCN 80.85±2.03 77.18±2.23 70.78±4.66 69.75±2.67

L1RBLS 80.69±1.87 78.86±1.21 75.20±1.53 70.87±1.73
L2RBLS 80.87±1.82 79.05±1.17 73.71±2.44 71.31±1.58

RTLS-BLS 84.00±1.94 81.07±1.34 76.50±2.26 73.87±1.53

ele-2

BLS 99.01±0.17 97.01±0.31 97.44±0.21 94.42±0.50
BLS-L1 99.24±0.07 97.25±0.23 97.25±0.21 95.55±0.36
BSCN 98.42±0.40 95.12±1.44 95.41±0.95 92.16±1.54

L1RBLS 99.28±0.05 96.95±0.61 97.28±0.11 95.53±1.12
L2RBLS 99.28±0.04 97.15±0.38 96.91±0.24 95.68±0.47

RTLS-BLS 99.32±0.07 97.70±0.19 97.88±0.18 95.87±0.42

friedman

BLS 89.43±0.77 85.22±1.82 85.96±1.26 80.28±3.60
BLS-L1 89.42±1.04 88.04±1.11 86.64±1.27 85.73±0.92
BSCN 89.56±0.82 86.80±1.19 86.87±1.10 81.11±1.66

L1RBLS 88.34±1.21 87.15±1.37 85.77±1.39 84.98±1.63
L2RBLS 89.54±0.88 88.06±1.03 86.34±0.98 85.69±0.88

RTLS-BLS 90.55±0.73 89.16±0.97 87.87±0.50 86.40±1.02

plastic

BLS 79.75±0.25 74.64±2.06 73.45±1.23 66.63±1.56
BLS-L1 79.63±0.32 73.74±1.66 68.16±3.78 59.96±5.04
BSCN 79.42±0.32 76.33±0.38 75.09±0.74 67.20±1.28

L1RBLS 79.68±0.34 75.07±1.43 73.45±3.02 61.71±6.49
L2RBLS 79.33±0.68 75.26±1.28 72.31±3.01 65.17±4.97

RTLS-BLS 80.27±0.10 77.24±0.20 75.98±0.79 70.27±1.02

stock

BLS 95.53±0.40 93.87±0.52 93.55±0.94 91.57±0.87
BLS-L1 95.71±0.35 95.61±0.33 94.77±0.38 94.65±0.35
BSCN 95.21±0.45 94.34±0.63 92.71±1.48 92.30±0.79

L1RBLS 95.49±0.36 95.37±0.45 94.52±0.38 94.80±0.41
L2RBLS 95.67±0.40 95.71±0.27 94.79±0.42 94.88±0.38

RTLS-BLS 96.29±0.32 96.16±0.36 95.34±0.36 95.12±0.38

laser

BLS 96.46±0.75 96.05±1.81 92.71±1.39 94.19±1.02
BLS-L1 95.45±0.78 97.01±0.73 93.87±1.18 95.48±0.47
BSCN 94.91±1.47 85.49±2.03 89.98±3.82 89.36±4.51

L1RBLS 94.55±1.18 96.65±1.03 93.43±1.69 92.23±1.91
L2RBLS 94.58±0.75 96.40±1.14 93.95±1.26 95.34±0.69

RTLS-BLS 96.87±0.33 97.33±0.28 95.06±0.70 95.72±0.35

autoMPG8

BLS 82.96±2.92 84.38±1.85 77.23±2.47 71.91±3.15
BLS-L1 85.30±0.85 86.49±1.19 81.75±0.89 82.71±1.02
BSCN 83.19±2.05 79.93±3.02 73.17±5.48 60.71±8.11

L1RBLS 86.70±0.43 86.93±0.81 82.27±0.65 82.85±0.97
L2RBLS 86.23±0.87 87.05±0.65 81.92±0.71 82.26±0.72

RTLS-BLS 87.68±0.64 88.05±0.88 82.29±0.97 82.84±1.38

wankara

BLS 98.43±0.19 97.12±0.64 96.04±0.88 93.81±0.62
BLS-L1 98.65±0.14 98.51±0.17 97.90±0.22 94.98±0.42
BSCN 97.51±1.77 95.65±2.31 93.31±1.74 89.44±4.09

L1RBLS 98.71±0.08 98.65±0.14 97.89±0.29 95.25±0.39
L2RBLS 98.67±0.09 98.66±0.07 98.02±0.11 95.30±0.23

RTLS-BLS 98.74±0.09 98.69±0.09 98.03±0.17 95.97±0.18

109

Journal of Computers Vol. 36 No. 1, February 2025

Table 10. Efficiency comparison on regression databases (Contamination rates=10%)

Datasets Algorithms ε Training time(s) Enhancement
nodes±STD

concrete

BLS

0.115

0.0163 22.65±2.395
BLS-L1 0.1078 18.28±3.725
BSCN 0.1051 35.60±4.580

L1RBLS 0.0846 18.58±3.501
L2RBLS 0.0493 18.66±3.931

RTLS-BLS 0.0935 12.96±2.025

ele-2

BLS

0.02

0.1168 53.80±5.852
BLS-L1 0.4595 55.64±6.620
BSCN 0.2261 51.70±7.953

L1RBLS 0.1505 54.62±5.615
L2RBLS 0.1673 54.30±5.435

RTLS-BLS 0.3240 46.10±2.514

friedman

BLS

0.07

0.0297 29.60±9.891
BLS-L1 0.1855 23.40±5.602
BSCN 0.1205 25.50±5.312

L1RBLS 0.0541 27.60±9.294
L2RBLS 0.0469 26.80±8.522

RTLS-BLS 0.0773 16.20±4.045

plastic

BLS

0.155

0.4989 25.60±7.947
BLS-L1 1.1045 84.60±5.911
BSCN 0.2979 18.30±6.567

L1RBLS 0.9081 46.30±2.662
L2RBLS 0.9237 53.50±3.227

RTLS-BLS 0.4540 17.40±1.506

stock

BLS

0.055

0.0667 38.30±6.485
BLS-L1 0.2314 21.50±9.585
BSCN 0.2531 55.10±3.479

L1RBLS 0.0746 31.60±9.178
L2RBLS 0.0673 27.10±8.945

RTLS-BLS 0.2483 14.30±4.322

laser

BLS

0.045

0.0421 39.60±1.368
BLS-L1 0.2411 36.00±4.422
BSCN 0.2669 59.40±4.169

L1RBLS 0.0686 45.70±5.016
L2RBLS 0.0522 36.10±2.741

RTLS-BLS 0.0983 17.40±4.766

autoMPG8

BLS

0.082

0.0086 4.60±2.914
BLS-L1 0.0712 2.90±2.079
BSCN 0.1273 44.50±3.866

L1RBLS 0.0619 6.00±2.000
L2RBLS 0.0222 6.00±4.615

RTLS-BLS 0.0644 2.70±0.675

wankara

BLS

0.025

0.0383 139±14.153
BLS-L1 0.5290 36.40±8.637
BSCN 1.4914 174±16.812

L1RBLS 0.0925 55.50±4.260
L2RBLS 0.0497 45.30±3.393

RTLS-BLS 0.0953 34.50±5.049

110

Regularized Total Least Squares Broad Learning System for Regression

Table 11. Results of ablation studies

Datasets Algorithms Contamination rates (RMSE±STD ×10−3)
10% 20% 30% 40%

concrete

Baseline(BLS) 9.55±0.52 10.65±0.99 11.75±0.74 12.42±0.66
BLS+KSP-BLS-AE 9.03±0.48 10.08±0.45 10.84±0.65 11.79±0.57

BLS+R-TLS 8.89±0.40 9.85±0.25 10.33±0.27 11.66±0.46
RTLS-BLS 8.56±0.53 9.30±0.33 10.12±0.49 11.05±0.33

friedman

Baseline(BLS) 5.77±0.21 6.86±0.42 7.15±0.32 8.30±0.73
BLS+KSP-BLS-AE 5.55±0.22 6.55±0.33 6.91±0.25 7.58±0.37

BLS+R-TLS 5.51±0.29 6.16±0.26 6.80±0.22 7.35±0.27
RTLS-BLS 5.45±0.21 5.88±0.26 6.65±0.13 6.91±0.26

autoMPG8

Baseline(BLS) 8.15±0.66 7.99±0.47 9.51±0.51 10.94±0.62
BLS+KSP-BLS-AE 7.60±0.20 7.53±0.27 8.92±0.31 9.05±0.53

BLS+R-TLS 7.42±0.16 7.37±0.36 8.71±0.23 8.77±0.43
RTLS-BLS 6.95±0.18 7.00±0.26 8.40±0.23 8.56±0.34

Table 12. Performance comparison of different models on a core network traffic dataset in European cities

Algorithms MAE±STD RMSE±STD MSE±STD R2±STD
BLS 0.0180±0.0004 0.0248±0.0006 0.0006±0 0.9928±0.0006

BLS-L1 0.0172±0.0008 0.0235±0.0009 0.0006±0 0.9936±0.0009
BSCN 0.0190±0.0007 0.0268±0.0010 0.0007±0.0001 0.9916±0.0007

L1RBLS 0.0187±0.0016 0.0242±0.0016 0.0006±0.0001 0.9932±0.0009
L2RBLS 0.0179±0.0012 0.0243±0.0015 0.0006±0.0001 0.9931±0.0008

RTLS-BLS 0.0160±0.0007 0.0221±0.0009 0.0005±0 0.9943±0.0004

Table 13. Performance comparison of different models on UK academic backbone network traffic dataset

Algorithms MAE±STD RMSE±STD MSE±STD R2±STD
BLS 0.0169±0.0008 0.0232±0.0012 0.0005±0.0001 0.9929±0.0007

BLS-L1 0.0168±0.0008 0.0219±0.0009 0.0005±0 0.9937±0.0004
BSCN 0.0183±0.0018 0.0252±0.0035 0.0006±0.0002 0.9915±0.0026

L1RBLS 0.0166±0.0011 0.0219±0.0013 0.0005±0.0001 0.9937±0.0008
L2RBLS 0.0164±0.0010 0.0215±0.0010 0.0005±0 0.9939±0.0006

RTLS-BLS 0.0158±0.0004 0.0206±0.0004 0.0004±0 0.9944±0.0002

In future research, several aspects warrant consideration. First, classification tasks are of significant impor-
tance in the field of machine learning, and the RTLS-BLS method could be extended to address classification
tasks involving noisy input and output values. Second, the determination of parameters for RTLS-BLS currently
relies on grid search, a process that can be time-consuming. The identification of an efficient and effective ap-
proach to swiftly obtain optimal parameters represents another challenge to be addressed in future studies.

6 Acknowledgement

This work is supported in part by the National Natural Science Foundation of China (Nos. 62373116 and
62163007), Guizhou Provincial Science and Technology Projects (QKHZC[2023]118, PTRC[2020]6007-2),
Guizhou Provincial Basic Research Program (Natural Science) (ZK[2024]-035), Natural Science Research
Foundation of Guizhou University ([2022]26).

References

[1]	 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks,
Communications of the ACM 60(6)(2017) 84–90.

111

Journal of Computers Vol. 36 No. 1, February 2025

[2]	 D.W. Otter, J.R. Medina, J.K. Kalita, A survey of the usages of deep learning for natural language processing, IEEE
transactions on neural networks and learning systems 32(2)(2021) 604–624.

[3]	 L. He, B. Ding, H. Wang, T. Zhang, An optimal 3d convolutional neural network based lipreading method, IET Image
Processing 16(1)(2022) 113–122.

[4]	 P. Covington, J. Adams, E. Sargin, Deep neural networks for youtube recommendations, in: Proc. the 10th ACM confer-
ence on recommender systems, 2016.

[5]	 S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu, A survey of deep learning techniques for autonomous driving,
Journal of field robotics 37(3)(2020) 362–386.

[6]	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521(7553)(2015) 436–444.
[7]	 C.P. Chen, Z. Liu, Broad learning system: An effective and efficient incremental learning system without the need for

deep architecture, IEEE transactions on neural networks and learning systems 29(1)(2018) 10–24.
[8]	 C.P. Chen, Z. Liu, S. Feng, Universal approximation capability of broad learning system and its structural variations,

IEEE transactions on neural networks and learning systems 30(4)(2019) 1191–1204.
[9]	 F. Yang, A CNN-based broad learning system, in: Proc. 2018 IEEE 4th International Conference on Computer and

Communications, 2018.
[10]	 T. Li , B. Fang, J. Qian, X. Wu, CNN-based broad learning system, in: Proc. 2019 IEEE 4th International Conference

on Signal and Image Processing, 2019.
[11]	 S. Feng, C.P. Chen, Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification, IEEE

Transactions on Cybernetics 50(2)(2020) 414–424.
[12]	 S. Huang, Z. Liu, W. Jin, Y. Mu, Broad learning system with manifold regularized sparse features for semi-supervised

classification, Neurocomputing 463(2021) 133–143.
[13]	 W. Ding, Y. Tian, S. Han, H. Yuan, Greedy broad learning system, IEEE Access 9(2021) 79307–79315.
[14]	 L. Zhang, J. Li, G. Lu, P. Shen, M. Bennamoun, S.A.A. Shah, Analysis and variants of broad learning system, IEEE

Transactions on Systems, Man, and Cybernetics: Systems 52(1)(2022) 334–344.
[15]	 H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and

broad network, IEEE Transactions on Circuits and Systems I: Regular Papers 67(3)(2020) 983–994.
[16]	 W. Fan, Y. Si, W. Yang, M. Sun, Class-specific weighted broad learning system for imbalanced heartbeat classification,

Information Sciences 610(2022) 525–548.
[17]	 Y. Zheng, B. Chen, S. Wang, W. Wang, Broad learning system based on maximum correntropy criterion, IEEE

Transactions on Neural Networks and Learning Systems 32(7)(2021) 3083–3097.
[18]	 P. Huang, B. Chen, Bidirectional broad learning system, in: Proc. 2020 IEEE 7th International Conference on Industrial

Engineering and Applications, 2020.
[19]	 X.-N. Fan, S.-W. Zhang, Lpi-bls: Predicting lncrna–protein interactions with a broad learning system-based stacked en-

semble classifier, Neurocomputing 370(2019) 88–93.
[20]	 M. Wang, Q. Ge, H. Jiang, G. Yao, Wear fault diagnosis of aeroengines based on broad learning system and ensemble

learning, Energies 12(24)(2019) 4750.
[21]	 L. Zhu, C. Lian, Z. Zeng, Y. Su, A broad learning system with ensemble and classification methods for multi-step-ahead

wind speed prediction, Cognitive Computation 12(2020) 654–666.
[22]	 S. Issa, Q. Peng, X. You, Emotion classification using eeg brain signals and the broad learning system, IEEE

Transactions on Systems, Man, and Cybernetics: Systems 51(12)(2021) 7382–7391.
[23]	 D. Liu, S. Baldi, W. Yu, J. Cao, W. Huang, On training traffic predictors via broad learning structures: A benchmark

study, IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(2)(2022) 749–758.
[24]	 J. Jin, Z. Liu, C.P. Chen, Discriminative graph regularized broad learning system for image recognition, Science China

Information Sciences 61(2018) 1–14.
[25]	 S. Feng, W. Ren, M. Han, Y. W. Chen, Robust manifold broad learning system for large-scale noisy chaotic time series

prediction: A perturbation perspective, Neural Networks 117(2019) 179–190.
[26]	 J.-W. Jin, C.P. Chen, Regularized robust broad learning system for uncertain data modeling, Neurocomputing 322(2018)

58–69.
[27]	 W. Guo, T. Xu, M-estimator-based robust broad learning system, Control and Decision, 38(4)(2023) 1039–1046.
[28]	 M. Gan, H.-T. Zhu, G.-Y. Chen, C.L.P. Chen, Weighted generalized cross-validation-based regularization for broad

learning system, IEEE Transactions on Cybernetics 52(5)(2022) 4064–4072.
[29]	 G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313(5786)(2006)

504–507.
[30]	 K. Yang, Y. Liu, Z. Yu, C.L.P. Chen, Extracting and composing robust features with broad learning system, IEEE

Transactions on Knowledge and Data Engineering 35(4)(2023) 3885–3896.
[31]	 H. Lai, Y. Pan, C. Lu, Y. Tang, S. Yan, Efficient k-support matrix pursuit, in: Proc. European Conference on Computer

Vision, 2014.
[32]	 A. Argyriou, R. Foygel, N. Srebro, Sparse prediction with the k-support norm, in: Proc. Advances in Neural Information

Processing Systems 25, 2012.
[33]	 S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating

direction method of multipliers, Foundations and Trends® in Machine learning, 2011 (1–122).

112

Regularized Total Least Squares Broad Learning System for Regression

[34]	 I. Markovsky, S. Van Huffel, Overview of total least-squares methods, Signal processing 87(10)(2007) 2283–2302.
[35]	 G.H. Golub, P.C. Hansen, D.P. O’Leary, Tikhonov regularization and total least squares, SIAM journal on matrix analy-

sis and applications 21(1)(1999) 185–194.
[36]	 C. Zhang, S. Ding, W. Du, Broad stochastic configuration network for regression, Knowledge-Based Systems 243(2022)

108403.

