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Abstract. Recommendation systems play an increasingly crucial role amidst the prevalence of information 
overload. However, most existing recommendation systems perceive the recommendation process as static, 
thus overlooking the implicit information value in interactions between users and systems. Additionally, the 
majority of current research efforts are focused on processing positive user feedback, while neglecting nega-
tive feedback. However, negative feedback also contains valuable user preference information and has the po-
tential to significantly improve recommendation tasks. Therefore, this paper introduces a novel recommenda-
tion model based on Deep Reinforcement Learning (DRL), referred to as MDRR-att. In the proposed frame-
work, we presents a specially designed state generation module that incorporates an attention mechanism to 
extract real-time preference information from users’ historical interaction records.  Furthermore, a multi-agent 
Actor-Critic algorithm is employed to simulate the real-time recommendation process, enabling the dynamic 
collection of user preference information while effectively utilizing negative feedback data. Experiments were 
conducted on two publicly available datasets. The results suggest that our proposed recommendation frame-
work offers significant advantages in utilizing user negative feedback information.

Keywords: recommendation system, deep reinforcement learning, negative feedback, multi-agent, attention 
mechanism

1   Introduction

In the digital age, the primary objective of recommendation systems is to deliver information that aligns with us-
ers’ interests and requirements. However, users’ interests are inherently diverse and subject to rapid fluctuations, 
which poses a significant challenge for traditional recommendation systems in adapting to these swift changes, 
particularly in relation to users’ positive and negative feedback. To improve the efficacy of recommendation sys-
tems, this study introduces a novel recommendation model—MDRR-att. This model integrates the benefits of 
users’ positive and negative feedback, attention mechanisms, and multi-agent systems to offer more precise and 
personalized recommendations.

In contemporary recommendation systems, collaborative filtering methods have demonstrated considerable 
success, particularly through techniques such as matrix factorization, as introduced by Koren et al. [1]. However, 
these methods frequently encounter challenges in addressing the cold start problem associated with new users 
or items, and they often exhibit insufficient responsiveness to rapid changes in user interests. Furthermore, tradi-
tional collaborative filtering approaches tend to overlook users’ negative feedback, as highlighted in [2], thereby 
constraining the system’s capacity to adapt to user dissatisfaction. Content-based methods, exemplified by the 
content recommendation model proposed in [3], primarily focus on aligning item features with user preferences. 
Nevertheless, these approaches frequently neglect the dynamic nature of user preferences, resulting in recom-
mendations that may lack both timeliness and diversity. Typically, these methods rely on static user profiles that 
are not updated in real-time to reflect shifts in user interests. Hybrid recommendation systems, as suggested in 
[4], aim to integrate collaborative filtering and content-based techniques to enhance the accuracy and coverage 
of recommendations. Despite this integration, such systems continue to grapple with efficiency challenges when 
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processing large-scale data and real-time feedback, often employing single-agent decision-making that inade-
quately simulates the complexities of user behavior. Deep learning models, as proposed in [5], enhance recom-
mendation accuracy through the automatic extraction of features. However, these models generally necessitate 
substantial data and computational resources, and they may lack adaptability in the face of abrupt changes in user 
behavior. Deep reinforcement learning (DRL) recommendation systems offer the potential to interact with the 
environment to learn optimal recommendation strategies, showcasing their capability to address complex deci-
sion-making challenges. Nonetheless, many DRL models encounter practical application issues, including learn-
ing efficiency, stability, and scalability. Additionally, numerous DRL models do not fully leverage users’ negative 
feedback, as discussed in [6], which further constrains their ability to respond effectively to user dissatisfaction.

In the existing literature on recommendation systems, the effective management of both positive and negative 
feedback is crucial for enhancing the quality of recommendations. For example, Zhao et al. [7] examined the 
significance of user feedback in recommendation systems in their comprehensive review, highlighting the ne-
cessity of differentiating between positive and negative feedback. Attention mechanisms, recognized as a potent 
tool, have been shown to improve the performance of recommendation systems. Cheng et al. [8] illustrated in 
their research how attention mechanisms can be employed to better capture user interests within recommendation 
systems. Additionally, multi-agent systems [9] exhibit considerable potential in simulating the interactive effects 
present in users’ decision-making processes.

The MDRR-att model proposed in this study seeks to overcome the limitations of current recommendation 
systems by integrating the benefits of both positive and negative user feedback, attention mechanisms, and 
multi-agent systems, thereby offering more accurate and personalized recommendations. The design of the 
model thoroughly considers the dynamic and multi-dimensional characteristics of user behavior, facilitating a 
comprehensive understanding of user preferences through innovative state generation modules and multi-agent 
architectures. Experimental results indicate that the MDRR-att model surpasses existing methods across vari-
ous evaluation metrics, underscoring its potential for application and research significance within the domain of 
recommendation systems. Future research will further investigate the optimization and extension of the model, 
building upon this foundation to accommodate more complex recommendation scenarios and diverse user needs.

The primary contributions of this paper are as follows: (1) The MDRR-att model integrates both positive and 
negative feedback from users into the recommendation process, thereby offering a more nuanced understand-
ing of user preferences through the construction of distinct representations for positive and negative states. (2) 
By incorporating an attention layer, the model is capable of assigning varying weights to users’ preferences for 
items, which enhances the relevance and accuracy of the recommendations provided. (3) The model employs a 
multi-agent architecture to separately process and learn from positive and negative states, thereby improving the 
model’s adaptability and flexibility in response to user behavior. (4) The model has been validated in real-world 
recommendation scenarios, demonstrating the efficacy of the MDRR-att model and its superiority over existing 
technologies across multiple dimensions.

The structure of this paper is organized as follows: Section 2 presents a comprehensive analysis of current rec-
ommendation algorithms and their inherent limitations. Section 3 explores the modeling and application of deep 
reinforcement learning within recommendation systems. Section 4 elaborates on the architecture, principles, and 
implementation methodologies of the MDRR-att model, including the training process. Section 5 illustrates the 
performance of the MDRR-att model and highlights its advantages over alternative recommendation systems 
through comparative experiments. Finally, Section 6 concludes the paper and offers insights into potential future 
research directions. 

2   Related Works

In the contemporary digital landscape characterized by an abundance of information, recommendation systems 
are essential for improving user experience. These systems analyze user behavior and preferences to deliver per-
sonalized content recommendations. With ongoing technological advancements, recommendation systems have 
progressed from conventional collaborative filtering techniques to sophisticated models that incorporate deep 
learning and reinforcement learning methodologies. This section will critically review pertinent research from 
recent years to highlight the innovative features and potential benefits of the MDRR-att model in comparison to 
existing technologies.

Traditional recommendation systems predominantly rely on collaborative filtering techniques, which en-
compass user-based collaborative filtering (User-based CF) and item-based collaborative filtering (Item-based 
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CF). User-based CF generates recommendations by identifying groups of users exhibiting similar rating be-
haviors [10]. Conversely, Item-based CF recommends products by assessing the similarity between items [11]. 
Nonetheless, these methodologies encounter several challenges, including the cold start problem, scalability 
issues, and data sparsity, particularly in scenarios characterized by a substantial increase in the number of users 
and items [12, 13]. To mitigate these challenges, matrix factorization (MF) techniques have been integrated into 
collaborative filtering, facilitating the identification of latent factors through the decomposition of the user-item 
rating matrix [14]. A notable example of enhancing recommendation quality through matrix factorization is 
Netflix’s recommendation algorithm [15]. However, it is important to acknowledge that MF methods possess 
limitations in effectively capturing the dynamics of evolving user interests over time.

The advancement of deep learning technologies has led to substantial enhancements in recommendation sys-
tems. By employing deep neural networks, these systems are capable of learning more abstract and intricate pat-
terns of user-item interactions, as well as extracting deep-level features from auxiliary information [16]. For in-
stance, convolutional neural networks (CNNs) are utilized to analyze movie posters and product images, thereby 
improving the feature representation of items within recommendation systems [17]. The implementation of the 
BERT model has significantly augmented the capacity of text-based recommendation systems to discern nuanced 
differences in content [18]. Furthermore, recurrent neural networks (RNNs), particularly long short-term memo-
ry networks (LSTMs), are proficient in tracking sequences of user behavior, offering a novel perspective on the 
temporal dynamics of user interactions [17].

Deep reinforcement learning (DRL) presents a novel approach to recommendation systems by conceptualizing 
the recommendation process as a continuous decision-making framework. DRL methodologies are capable of 
learning from user feedback in real-time, thereby enabling the dynamic adjustment of recommendation strategies 
to deliver personalized suggestions [19]. For instance, the Q-learning algorithm has been utilized in video recom-
mendation systems to enhance the relevance of video suggestions by continuously updating the value function 
[20]. Additionally, policy gradient methods, including Actor-Critic architectures, have been employed in music 
recommendation systems; these approaches assess recommendations and modify strategies to accommodate fluc-
tuations in user preferences [21]. Nevertheless, these algorithms predominantly concentrate on positive feedback, 
often overlooking the potential insights derived from negative feedback, which constrains their capacity to com-
prehensively understand user preferences.

In recent years, research in recommendation systems has advanced significantly, resulting in the development 
of numerous innovative models and technologies. For example, recommendation systems based on graph neural 
networks effectively capture intricate social relationships and contextual information by constructing interac-
tion graphs that represent the relationships between users and items [22]. However, these models continue to 
encounter challenges when addressing large-scale data and real-time recommendation scenarios. Additionally, 
multimodal learning within recommendation systems has made notable progress by integrating diverse types 
of data, including text, images, and videos, thereby enhancing the richness and diversity of these systems [23]. 
Nonetheless, these approaches often necessitate considerable computational resources for the integration of vari-
ous modalities, and there remains potential for improvement in the management of negative feedback.

Revised Text: This study presents the MDRR-att model, which synthesizes user feedback, attention mecha-
nisms, and multi-agent systems to overcome the limitations of current recommendation systems in accommodat-
ing the dynamic fluctuations in user interests and real-time feedback. The primary research question addressed 
by the MDRR-att model is how to effectively incorporate both positive and negative user feedback to optimize 
recommendation strategies, as well as how to enhance the adaptability and flexibility of the recommendation 
process through the implementation of multi-agent systems. Comprehensive experiments conducted on various 
public datasets demonstrate that the MDRR-att model surpasses existing models in terms of accuracy, diversity, 
and user satisfaction, thereby underscoring its potential applications and research significance within the domain 
of recommendation systems.

3   The Overall Framework of Reinforcement Learning Recommendation System

In this paper, we examine the interaction process between the recommendation system and users as illustrated in 
Fig. 1. The recommendation system aims to infer user preferences based on the history of users’ interactions with 
the system (i.e., the state st ), and recommends items (i.e., action at ) in line with users’ preferences. Users will 
then provide feedback (i.e., rewards rt ) on the recommended items, and the recommendation system will assess 
the accuracy of these recommendations based on user feedback. The goal of the recommendation system is to 
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suggest items that align with the user’s preferences, aiming to maximize user satisfaction. Therefore, this process 
is modeled as a Markov Decision Process (MDP) in this paper. An MDP can be defined as follows:

State space S:A state st ∈ S is defined as the collection of items with which users have interacted with the sys-
tem prior to time t and the related information of users registered in the system (if registered).

Action space A: An action at ∈ A is chosen by the system based on the user’s state at time t.
State transition function P: P is a probability function that indicates the probability of the state transitioning 

from st  to st +1 after taking action at .
Reward function R: The recommendation system will suggest a set of items to the user based on the action     

at , and the user will provide feedback on the recommended items. Different feedback taken by the user on the 
recommended items will result in different rewards (i.e., rewards rt ) for the agent.

Discount factor γ  : This factor is used to measure the present value of long-term rewards. When γ = 0, it sig-
nifies that the agent considers only immediate rewards and disregards future ones. When γ = 1, both short-term 
and long-term rewards are deemed equally important.

Within this system, at each time step t, the recommendation agent decides on an action at ∈ A based on the 
current user state st ∈ S. Subsequently, it makes recommendations based on this action at and receives a reward 
r(st, at). Subsequently, the user’s state is updated from st to st +1 according to the state transition function P(st +1, st , 
at). The objective of the recommendation agent is to discover an optimal policy θπ  that maximizes the expected 
cumulative reward of the recommendation system over time.

In the recommendation model proposed in this paper, the action is represented by a continuous parameter vec-
tor rather than by one or a set of items. This vector is then dot-multiplied with the feature vector of items, and the 
item with the highest dot product score is recommended to the user. The user receives the system’s recommen-
dation and provides feedback to the recommendation system, which then updates the user’s state and receives a 
reward based on the feedback.

Fig. 1. Recommended deep reinforcement learning

4   MDRR-att Model Framework

In this paper, a reinforcement learning recommendation algorithm (MDRR-att) based on positive and negative 
user feedback is developed. The algorithm is based on a dual-Actor architecture designed to handle both positive 
feedback (i.e., features of items that users like) and negative feedback (i.e., features of items that users dislike) 
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from users. This method not only offers personalized recommendations but also improves the accuracy of the 
model.

4.1   State Generation Module

The state generation module is responsible for producing the current state of the user by utilizing the user’s fea-
ture information alongside historical interaction data with the system. An effective state generation network is 
capable of not only generating high-quality state information but also improving the overall performance of the 
recommendation system.  

As illustrated in Fig. 2, the user’s feature vector, along with the feature vectors of the top N items that received 
positive and negative feedback from the user prior to time t, are utilized as inputs to the state representation mod-
ule. The output of this module corresponds to the user’s current state. The state representation module is bifurcat-
ed into two segments: the left segment is dedicated to the generation of the positive state, while the right segment 
is responsible for the generation of the negative state. The process of generating the positive feedback state is 
further subdivided into three components: (1) the positive item feedback from the user, in conjunction with the 
user’s feature vector on the right, is processed through an attention network and an average pooling layer to pro-
duce a weighted feature vector that encapsulates the user’s positive feedback items; (2) the user’s feature vector 
on the right, which conveys the user’s feature information; and (3) the resultant vector derived from the matrix 
multiplication operation located in the central section. The weights of the weighted feature vectors are computed 
using equations (1), (2), and (3). This component is primarily designed to distinguish the varying degrees of pref-
erence that different users exhibit towards the same items.

( )( )2 2 1 1Re ,uv va LU u i W b W b′ = + +   .                                                 (1)
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exp( )
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uv n
uvi
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′∑ .                                                              (2)

( ) ( ) | 1, ,uv vavgpooling i avg a i v n= =  .                                               (3)

In this context, u represents the user feature vector, while iv denotes the feature vector associated with item v. 
The parameters W1, W2 and b1, b2 correspond to the weights and biases of the attention network, respectively. The 
variable auv indicates the preference weight of user u for item v. The function avg_pooling(∙) refers to the average 
pooling layer, and i signifies the weighted feature vector. 

The generation of the negative feedback state is similarly categorized into the three previously mentioned 
components. The primary distinction lies in the fact that the item vector input into the attention network transi-
tions from the user’s positive feedback items to the user’s negative feedback items (referred to as negative items), 
while all other operations remain consistent. As a result, this model incorporates not only the user’s characteris-
tic information but also extracts historical interaction data between the user and the recommendation system. It 
simultaneously accounts for both positive and negative feedback provided by the user concerning the system’s 
recommendations. The state generation module can be mathematically represented by the following equations:

-[ , ]t t ts s s+= .                                                                       (4)

, ,t k ks i u i u+ + + = ⊗  .                                                                (5)

, ,t k ks u u i i− − − = ⊗  .                                                                (6)

Herein,  denotes the element-wise product, u represents the feature vector of the user, ki
+  and ki

−  denote the 

weighted eigenvectors corresponding to positive and negative feedback items, respectively. ts+  denotes the user’s 
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positive feedback state, ts−  signifies the user’s negative feedback state, and st represents the comprehensive state 

of the user. The dimensionality of all users and items is r, the dimensions of ts+  and ts−  are 3r, and the dimension 
of st is 6r.

Fig. 2. State generation module

4.2   MDRR-att Module Framework

As illustrated in Fig. 3, this study introduces a recommendation system model constructed on the basis of a du-
al-actor architectural design. The model employs two mutually independent yet collaborative actor functions to 
process both positive and negative feedback from users, thereby producing more accurate and personalised rec-
ommendation. outcomes.

Fig. 3. MDRR-att module framework
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Actor Network.  The Actor network, also referred to as the policy network, is utilised to facilitate the generation 
of actions based on the user’s current state. As illustrated in the upper left section of Fig. 3, at time t, the positive 
and negative feedback states ts+  and ts−  generated by the state generation module are inputted into the positive 

Actor network θ
π +

+ , which processes positive feedback information, and the negative Actor network θ
π −

− , which 
handles negative feedback information, respectively. Subsequently, they are transformed into actions through two 
layers of ReLU linear rectifier functions and one layer of Tanh hyperbolic tangent function to be transformed into 
actions ta+ = θ

π +
+ ( ts+ ), and ta− = θ

π −
− ( ts− ). Subsequently, based on equation (7):

( )-, -t t ta sum a a+= .                                                                 (7)

The two actions are combined into a composite action utilising the sum(∙) function. As previously established, 
the previous section, the dimensions of ts+  and ts−  are 3r, the dimension of st is 6r, and the action at ∈ R1r . The 
action entails a matrix multiplication operation with each item in the item space, resulting in a similarity score 
for each item, as illustrated in Equation (8).

.T
I k tscore i a=                                                                      (8)

In this context, the subscript k denotes the k-th item in the item space, represented by the variable ik.  
Subsequently, the items in the item space are ordered in descending order of similarity score, with the top N 
ranked items recommended to the user.  In this process, an ε-greedy strategy is employed.

Critic Network.  The Critic network, also referred to as the value function, is depicted on the right side of Fig. 
3 and is utilised to evaluate the expected return of the actions at taken by our model under the state st . The Critic 
network is a Deep Q-Network, which approximates the true action-value function Qπ(st , at), that is to say, the 
q-value function - with a deep neural network parameterised as Qω(st , at). The q-value is a measure of the actions 
at taken by the Actor network in state st . In particular, the input to the Critic network receives as input the user 
state st generated by the user state generation module and the action at generated by the policy network Actor. the 
output is the q-value, which is a scalar. Based on the q-value, the parameters of the Actor network are a manner 
that improves the performance of action at , thereby enhancing Qω(st , at). In the field of reinforcement learn-
ing, a considerable number of applications have been developed with the objective of identifying the optimal 
action-value function, represented by Q*(st , at). This function seeks to identify the maximum expected return 
through the optimal policy, as described by the Bellman equation:

( ) ( )
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+ + + + = +  .                                     (9)

In practical situations, it is not feasible to calculate the complete action space A in order to select the optimal 
action at using equation (9), given that the action space in real-world scenarios is typically vast. Accordingly, 
the proposed model employs a deterministic action a, generated by the Actor network, thereby circumventing 
the computational burden associated with calculating the entire action space A as per equation (9). Accordingly, 
equation (9) is modified as follows:

( ) ( )
1 1 1, , | ,

tt t s t t t t tQ s a E r Q s a s aω ωγ
+ + + = +  .                                         (10)

Subsequently, the Actor is updated by sampling the policy gradient in accordance with the Deterministic 
Policy Gradient theorem, the update formula for which is as follows:

( ) ( ) ( ) ( ),
1 ,

t t t
a s s a s s st

J Q s a s
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θ θ ω θ θππ π
= = =

∇ ≈ ∇ ∇∑ .                                (11)
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where J(πθ), is the expectation of all possible q-values under policy πθ , and a mini-batch strategy is used here, 
with N representing the batch size. Since the proposed model of this paper is a dual-actor network, the above 
equation (11) needs to be rewritten as follows:

( ) ( ) ( ) ( ),
1 ,

t t t
a s s a s s st

J Q s a s
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θ θ ω θ θππ π + +
+ + + +

+
= = =

∇ ≈ ∇ ∇∑ .                           (12)
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where θ+  and θ−  are the parameters for the positive feedback Actor θ
π +

+  and negative feedback Actor θ
π −

− , 
respectively. During the updating process of the Critic network, the temporal difference learning method is em-
ployed:

( )( )21 - ,t t tt
L y Q s a

N ω= ∑ .                                                      (14)

where 1 1( , ( ))t t t ty r Q s sω θγ π′ ′+ += + , with rt = R(st, at), representing the immediate reward and γ  being the dis-
count factor. The MDRR-att framework also adopts the technique of target networks, where ω' and θ' are the 
parameters of the Critic and Actor networks, respectively.

4.3   Model Train 

The training process of the MDRR-att algorithm, as detailed in Algorithm 1, encompasses three phases: action 
generation, evaluation generation, and model parameter updating.

The training process is initiated with the random initialization of network weights and the buffer D (lines 1-3).  
The algorithm’s core is illustrated in lines 4-28.  The action generation phase, delineated on lines 7-9, commenc-
es with the calculation of scores for each historical interaction item derived from the user’s historic evaluations.  
This is achieved through the application of the formula pscore = ti * ri , wherein ti represents the evaluation time, 
and ri signifies the user’s rating score for item i. In instances where the evaluation is negative, the score is cal-
culated using the formula pscore = ti * (rmax − ri), and subsequently ordered, with rmax denoting the maximum rating 
score. Subsequently, the top n positively rated item matrix pt ={ 1i

+ , …, ni
+ }, (where ki

+  are the feature vectors 

of positively rated items) and the top n negatively rated item matrix nt  = { 1i
− , …, ni

− }, (where ki
−  are the feature 

vectors of negatively rated items) are then selected. This selection method considers both temporal factors and 
user evaluations, given that user preferences are subject to change over time. Subsequently, the state generation 
module produces three states, designated as ts+ , ts− , st (line 7). The states ts+ , ts−  are then input into the positive 

Actor network πθ+ and negative Actor network θπ − , respectively, in order to yield the current actions ta+ , ta− , and 
at (line 8). Subsequently, an item it is then selected from the item space for recommendation to the user, based on 
the formula (8) (line 9).

The second phase (lines 10-20) involves the utilisation of the Critic network for the computation of the opti-
mal action-value function, Qω(st , at). Firstly, the reward represented by the function rt = R(st , at), is calculated 
through user feedback. Then, based on the action  and state st , the optimal action-value function Qω(st , at), is 
computed via the Critic network. The user’s next state is updated based on the rewards to 1ts++ , 1ts−+ , st+1 = f (pt+1, 
nt+1), where f(∙) denotes the state generation module, and pt+1 and nt+1 respectively represent the list of user pos-
itive and negative feedback items at the next time step. If rt is positive, the user’s positive feedback state is up-
dated, such that pt+1=U +(pt , it), where U +(∙) denotes the function that calculates the scores for the items in pt and 
it using the formula pscore = ti * ri , and removes the item with the lowest score. Conversely, if rt is negative, the 
user’s negative feedback state is updated to nt+1=U ─(nt , it), where U ─(∙), denotes the function that calculates the 
scores for the items in nt and it using the formula pscore = ti * (rmax − ri), removing the item with the lowest score. 
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The trajectory ( ts+ , ts− , st , ta+ , ta− , at , rt , 1ts++ , 1ts−+ ), is subsequently stored in the buffer D.
The third phase (lines 21-28), the model update, begins with the target iteration value being obtained through 

formula (14). This is followed by the Actor and Critic networks being updated based on the respective update 
formulas. In conclusion, the parameters θ and ω of the target networks are updated.

Algorithm 1. The training process of the MDRR-att algorithm
Input: Actor learning rate ηa, Critic learning rate ηc, discount factor λ, sample size N, user vector 
space U, item vector space I
Output: θ+ , θ− and ω
1: Initialization of Actor πθ+ , Actor πθ− , and Critic Qω with 

Parameters θ+ , θ− and ω;

2: Initialize the target networks π+′ , π−′ , and Qꞌ with weights set as 

 θ '
+ ← θ+ , θ

'
− ← θ− , and ω' ← ω;

3: Initialize the replay buffer D
4: for session = 1, M do for
5:  Observe the initial state s0 based on the historical interactions:
6:    for t = 1, T do

7:      Observe the states ts+ , ts−  and st = f (pt, nt), where          Pt = { 1i
+ , ni

+ }, nt = { 1i
− , ni

− };

8:      Based on the ε − greedy policy πθ+ and πθ− , obtain the actions ta+ , ta−  and at ;

9:      Based on the action at, recommend item it ;
10:    Calculate the reward rt = R(st, at) based on user feedback;
11:    Calculate Qω(st , at) through the Critic network;

12:    Observe the next state 1ts++ , 1ts−+ , st+1 = f (pt+1, nt+1)

13:    if rt > 0:
14:    pt+1 = U+(pt, it); 
15:    nt+1 = nt ; 
16:    else if rt < 0: 
17:     nt+1 = U ─(nt, it);
18:     pt+1 = pt ; 
19:     end if

20:     Store the trajectory ( ts+ , ts− , st , ta+ , ta− , at, rt, 1ts++ , 1ts−+ ), into the replay buffer D;

21:    Sample a mini-batch of trajectories ( is+ , is− , si , ia+ , ia− , ai , ri , 1is++ , 1is−+ ),

         from the replay buffer D using the technique of prioritized experience replay;

22:   Set 1 1( , ( ))i i i iy r Q s sω θγ π′ ′+ += + ;

23:     Update the Critic network by minimizing the loss:

          21 ( ( , )) ;i i iN i
L y Q s aω= −∑

24:     Update Actor θπ +  and Actor θπ −
 using sampled policy gradients:

 1
, ( )( ) ( , ) ( )

t t t
a s s a sN s st

J Q s a s
θθ θ ω π θ θπ π + +

+ + + +

+
= = =

∇ ≈ ∇ ∇∑

 1
, ( )( ) ( , ) ( )

t t t
a s s a sN s st

J Q s a s
θθ θ ω π θ θπ π − −

− − − −

−
= = =

∇ ≈ ∇ ∇∑
25:     Update the target network parameters:

(1 )θ τθ τ θ+ + +′ ′← + −

_ _ _(1 )θ τθ τ θ′ ′← + −
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(1 )ω τω τ ω′ ′← + − ;

26:   end for
27: end for

28: return +θ , θ−  and ω;

5   Experiments

5.1   Data Sets

To validate the effectiveness of the MDRR-att model, experiments were conducted on the following two re-
al-world datasets:

MovieLens-100k. A benchmark dataset comprising 100,000 ratings given by 943 users on 1,682 recommend-
ed movies on the MovieLens website. 

MovieLens-1M. A benchmark dataset containing 1 million ratings from 6,040 users for 3,952 movies on the 
MovieLens website. 

Table 1 presents the statistical information of the datasets:

Table 1. Dataset description

MovieLens-100k MovieLens-1M
# user 943 6,040
# item 1,682 3,952

# ratings 100,000 1,000,209

5.2   Evaluation Indicators

The primary goal of this recommendation system is to generate top-N recommendation items for users. 
Therefore, this paper employs Precision@N and NDCG@K to evaluate the quality of the recommendations pro-
duced by the recommendation system. In the proposed model, the model will recommend N items to a user at a 
given moment, and these two metrics are defined as follows:

@ TPPrecision N
TP FP

=
+

.                                             (15)

@@
@

DCG KNDCG K
IDCG K

= .                                                       (16)

In the above formula, TP represents the number of recommended items that received positive evaluations from 
users, and FP denotes the number of items evaluated as non-positive by users. Therefore, TP+FP represents the 
total number of items evaluated by users. DCG@K considers the positional relevance of items, where K is the 
considered length of the recommendation list. IDCG@K is the maximum possible DCG for a given recommen-
dation list length. NDCG@K is used to assess the accuracy of the ranking results.

5.3   Experiment Details Settings

For the two datasets referred to above, the paper randomly splits them into two parts: 80% of the ratings are used 
for training, and the remaining 20% are utilized for evaluation. For these datasets, the reward was set at r = (rat-
ings-3)/2 , where ratings of 4 and 5 are defined as positive evaluations, and ratings of 1 and 2 are defined as neg-
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ative evaluations. In each episode, the model does not recommend duplicate items. The learning rates of the two 
Actor networks were set to 0.0001, while the learning rate of the Critic network was set to 0.001. Batch sampling 
size was set to 64, and the discount rate γ was set to 0.9. To avoid overfitting, the Adam optimizer was utilized to 
optimize all RL methods based on L2 norm regularization in this paper. For the evaluation of the model, we uti-
lized the evaluation method in [7]. For a given session, the agent only recommends items that appear in this ses-
sion, rather than items from the entire item space. This is because in the recorded off-line logs, only the basic real 
feedback for existing items in the current session is available. Therefore, this evaluation process can be seen as 
a re-ranking procedure for existing items within the current session. For a fair comparison, all baseline methods 
were meticulously adjusted in this study.

5.4   Experimental Results and Analysis

To evaluate the performance of the proposed model, we conducted a comparative analysis against several base-
line methods utilizing two widely recognized datasets, MovieLens-100k and MovieLens-1M. The evaluation 
metrics employed in this analysis were Precision@20 and NDCG@20. Furthermore, we examined the influence 
of various components on the model’s performance.

(1) Comparison experiment with baseline model
This study utilizes conventional representative methods as baseline models, which include Popularity [24], 

PMF [25], and SVD++ [26]. Furthermore, it incorporates deep learning-based approaches such as DeepFM [27] 
and AFM [28]. Additionally, we conducted a comparison of methods grounded in reinforcement learning, specif-
ically DDPG [29], DQN [30], and Deep Reinforcement Learning for Recommendation Systems DEERS [7]. The 
experimental results are summarized in Table 2. 

Table 2. Performance of each algorithm on the Top-20 models on the MovieLens dataset 
(The best performing ones are in bold.)

Model MovieLens-100k MovieLens-1M
Precision@20 NDCG@20 Precision@20 NDCG@20

Popularity 0.5685 0.8720 0.5094 0.8727
PMF 0.5845 0.8849 0.5213 0.8734

SVD++ 0.5876 0.8866 0.5183 0.8785
AFM 0.6325 0.8914 0.5714 0.8825

DeepFM 0.6362 0.8941 0.5750 0.8841
DQN 0.6076 0.8815 0.5377 0.8759

DDPG 0.6052 0.8870 0.5364 0.8776
DEERS 0.6481 0.8933 0.5963 0.8878

MDRR-att 0.6525 0.9013 0.6247 0.9078

Popularity: Recommend the most popular items, that is, the items with the highest ratings.
PMF: Treat matrix decomposition as singular value decomposition, which only considers non-zero elements.
SVD++: Mixes the advantages of latent models and neighborhood models.
DeepFM: Explicitly model low-order and high-order feature interactions for recommendation.
AFM: Leveraging attention networks to explicitly model the importance of feature interactions for recommen-

dations.
DQN: Use Deep Q-network to generate q-values to evaluate all possible actions in the current state.
DDPG: Simply splicing positive feedback item embeddings to represent user status, this paper uses this meth-

od as a baseline to evaluate the effectiveness of the proposed model.
DEERS: A state with positive and negative feedback generated by a Recurrent Neural Network (RNN) within 

the Deep Q-Network (DQN) framework.
From Table 2, it is evident that the MDRR-att model exhibits superior performance across both datasets, as 

evidenced by its Precision@20 and NDCG@20 metrics, which significantly surpass those of other models.  This 
indicates that the MDRR-att model possesses a distinct advantage in delivering personalized recommendations.

The MDRR-att model demonstrates a substantial improvement in performance when compared to traditional 
recommendation models. Unlike the Popularity model, which relies on static data, the MDRR-att model analyzes 
users’ historical behaviors by incorporating both positive and negative feedback to develop a more nuanced user 
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preference profile, thus providing more personalized recommendations.  Furthermore, the deep reinforcement 
learning framework employed by MDRR-att enables the model to dynamically adjust its recommendation strat-
egy in response to real-time fluctuations in user preferences, a feature that the traditional Popularity model lacks.  
In comparison to matrix factorization-based models such as PMF and SVD++, the MDRR-att model effectively 
captures nonlinear and higher-order user-item relationships through deep learning techniques, whereas conven-
tional matrix factorization models are often constrained by linear assumptions and are unable to fully encapsulate 
this complexity.  Additionally, the MDRR-att model can integrate user feedback in real-time to continuously re-
fine the recommendation strategy, whereas traditional matrix factorization models typically necessitate retraining 
to update their parameters.

In comparison to deep learning-based models such as DeepFM and AFM, the MDRR-att model considers both 
positive and negative user feedback, thereby facilitating the extraction of a more comprehensive array of user 
preferences. This approach enhances the relevance and accuracy of recommendations. Additionally, MDRR-att 
incorporates multi-dimensional features of users and items through its multi-agent architecture, whereas tradi-
tional deep learning models typically concentrate on a singular data representation.

In comparison to deep reinforcement learning recommendation models, specifically when evaluating DQN 
and DDPG models, the MDRR-att framework generates more complex and enriched state representations 
through its attention mechanism and the incorporation of user negative feedback. This approach facilitates a 
more comprehensive understanding of user needs and preferences. While the DEERS model, which operates 
within the DQN framework and employs recurrent neural networks (RNN), generates states based on both posi-
tive and negative feedback and demonstrates the capacity to accommodate users’ dynamic preferences, MDRR-
att consistently outperforms DEERS in delivering personalized recommendations. This superior performance can 
be attributed to MDRR-att’s ability to produce more sophisticated state representations, as well as its multi-agent 
architecture, which enables independent processing and collaborative optimization of both positive and negative 
feedback. Such a design provides greater flexibility for strategy adjustments and enhances the model’s adaptabil-
ity to the dynamic changes in user preferences.

(2) Performance testing of models with varying components
To enhance the validation of the contributions of various components of the MDRR-att model to its overall 

performance, comparative analyses were conducted with the MDRR-n, MDRR-p, and basic MDRR models uti-
lizing the MovieLens-1M dataset. The MDRR-p model emphasizes positive user feedback, whereas the MDRR-n 
model concentrates on negative feedback. In contrast, the basic MDRR model takes into account both positive 
and negative feedback but does not integrate an attention mechanism. The results of these experiments are illus-
trated in Fig. 4.

Fig. 4. Performance of each algorithm on movieLens-1M
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In the context of the MovieLens-1M dataset, the MDRR-att model demonstrates superior performance com-
pared to the MDRR-p, MDRR-n, and MDRR models, as evidenced by its higher scores in both Precision@20 
and NDCG@20 metrics. Notably, the MDRR-p model exhibits enhanced performance relative to the MDRR-n 
model, indicating that positive user feedback exerts a more favorable influence on the efficacy of the recommen-
dation system within this dataset. This phenomenon may be attributed to users’ propensity to actively articulate 
their preferences for content they favor, while providing comparatively less feedback regarding content they 
dislike. Furthermore, the basic MDRR model, which integrates both positive and negative feedback, outperforms 
the MDRR-p and MDRR-n models that consider only a singular type of feedback. This finding underscores the 
advantage of incorporating both positive and negative feedback in a recommendation system, as it enhances the 
quality of recommendations. The MDRR model’s ability to balance these two types of feedback allows for a 
more comprehensive understanding of user preferences, whereas the MDRR-p and MDRR-n models, by focus-
ing exclusively on one dimension of user feedback, may hinder the model’s capacity to fully grasp user needs. 
Additionally, the MDRR-att model significantly surpasses the basic MDRR model in performance, attributable 
to the integration of an attention mechanism. This mechanism enables the MDRR-att model to assign varying 
weights to identical items for different users, thereby facilitating a more precise capture of individualized user 
requirements. The comparative analysis of the MDRR-p, MDRR-n, and MDRR models further substantiates 
the critical roles of positive feedback, negative feedback, and the attention mechanism within the overall model 
framework.

6   Conclusion

In this paper, we propose a recommendation model that utilizes multi-agent deep reinforcement learning, referred 
to as MDRR-att. The model incorporates a specially designed state generation module that effectively captures 
both positive and negative feedback derived from the user’s historical interactions with items. This module gen-
erates the user’s current state information by integrating an attention mechanism. Furthermore, the dual Actor 
network is capable of simultaneously processing the user’s positive and negative feedback, thereby facilitating 
accurate recommendations based on the user’s state. The performance of the proposed MDRR-att model was 
evaluated using two publicly available datasets, MovieLens-100k and MovieLens-1M. The results indicate that 
the MDRR-att model outperforms other models in terms of Precision@20 and NDCG@20 metrics.

Future research should concentrate on extracting relational network information among users. This informa-
tion can be employed to mitigate the cold start problem associated with new users. In instances where there is a 
lack of evaluative information available for a user during a session, preferences may be inferred by integrating 
the relationships among users, thereby facilitating more accurate recommendations.
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