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Abstract. The increasing integration of Internet of Things (IoT) devices into critical infrastructure has 
brought unprecedented connectivity and significant information security challenges such as malicious traf-
fic and network intrusions. This paper applies machine learning (ML) techniques to intelligently detect and 
prevent such malicious traffic in IoT environments. The paper explains in detail how ML techniques such as 
supervised learning, unsupervised learning, deep learning, and federated learning can be used to enhance the 
security posture of IoT by detecting malicious patterns in real time, adaptively, and accurately. Special empha-
sis is placed on the malicious traffic categories that are unique to IoT, the shortcomings of traditional intrusion 
detection systems, and how intelligent ML-based approaches can overcome these issues through autonomous 
feature learning and behavioral analysis. Key challenges such as data imbalance, weak generalization capabil-
ities, real-time processing requirements, and model vulnerability to adversarial attacks are discussed in detail. 
The paper concludes by pointing out future research avenues for efficient, scalable, and explainable machine 
learning-based security solutions for IoT, making this review a comprehensive roadmap for advancing intelli-
gent information security to address impending cyber threats.
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1   Introduction

The large-scale deployment of Internet of Things (IoT) devices in application areas such as smart life and health-
care, industrial automation, and critical infrastructure has transformed the digital world with unprecedented 
levels of connectivity and automation. However, as the scale of IoT devices continues to grow, security threats 
are also increasing, mainly due to the heterogeneity, scalability, and resource-constrained nature of IoT devices, 
which often lack strong built-in security mechanisms. As a result, IoT networks have become a prime target for 
various cyberattacks, especially malicious traffic attacks, including botnet communications, command injection 
attacks, and protocol abuse or anomalies. Such attacks severely undermine the basic principles of network se-
curity (availability, integrity, and confidentiality) as they lead to unauthorized access to information, disruption 
of device functionality, and cause large-scale denial of service attacks. Traditional rule-based or signature-based 
security solutions have proven to be inadequate as they lack sufficient flexibility and cannot identify unknown 
threats. Therefore, we need intelligent, real-time, and adaptive detection technologies that can cope with dynamic 
threat environments. Machine learning (ML) is a promising solution that uses data-driven models to learn com-
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plex malicious activity patterns from network traffic and generalize them to the detection of new types of attacks. 
This paper presents a comprehensive overview of the state-of-the-art in machine learning-based malicious IoT 
traffic detection and related technologies, with a focus on detection, anomaly classification, and deep learning 
techniques. We review existing methods based on their methodological design, compare their detection perfor-
mance on common datasets, and identify challenges in current research, such as data bias, interpretability, and re-
al-time operational constraints. Although numerous machine learning-based countermeasures have shown prom-
ise in IoT attack detection, there are still some important gaps to be filled, especially in dealing with the dynamic 
nature of IoT environments, the high computational cost of some machine learning models, and how to achieve 
interpretability in the decision-making process of security practitioners. In addition, the paper highlights the lack 
of common evaluation metrics across different IoT networks and the lack of large labeled datasets for training 
robust models as prominent obstacles that hinder research progress.

2   Malicious Traffic in IoT Networks

Malicious traffic in IoT networks is difficult to distinguish from legitimate traffic due to encryption, device diver-
sity, and complex behavior. The study highlights key metrics such as flow, timing, protocol anomalies, and source 
diversity. Advanced techniques such as deep learning, entropy-based feature selection, and attention mechanisms 
improve detection accuracy. Attack types include DDoS, spoofing, and botnets, while mitigation strategies lever-
age SDN, blockchain, and AI. Flow-based features are critical, especially when detecting encrypted threats. In 
summary, a multi-layered, behavior-driven approach is essential to protect the evolving IoT environment.

2.1   Characteristics of Malicious Traffic in IoT

The IoT security landscape is particularly challenging due to the difficulty in distinguishing legitimate traffic 
from malicious traffic. As IoT networks continue to grow in both size and complexity, the capability to detect 
and classify traffic effectively is increasingly important to their integrity and operation. A number of researchers 
have suggested various approaches to characterize malicious traffic in IoT environments with an emphasis on the 
prominent features of volume, timing, source diversity, and protocol anomalies of traffic. Pinheiro [1] identified 
the challenge of external attackers in detecting active IoT devices in encrypted traffic, which prefers to exploit 
traffic and protocol anomalies. Zhu [2] proposed a CMTSNN model for multi-classification of malicious and 
encrypted IoT traffic, with a priority on the metrics accuracy, precision, recall, and false positive rate, which are 
critical to distinguish between normal and malicious traffic. Let A denote the set of accurate classifications, P the 
set of predictions, Ttrue the true traffic classification, and Tpred the predicted traffic. The evaluation metrics are then 
defined as:
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These metrics are essential for achieving an effective classification of normal and malicious traffic in IoT 
networks. Diwa [3] introduced a novel feature selection technique for IoT traffic detection, with consideration 
to feature entropy estimation (FEE), which helps to accurately identify anomalies by considering traffic source 
diversity and protocol misuse. Similarly, Kawai [4] demonstrated that the identity of IoT devices can be revealed 
by communication traffic patterns, which confirms the importance of unique traffic patterns in IoT security. In ad-
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dition, Islam [5] proposed a stacked ensemble (SE) learning method for the classification of malicious activities, 
which investigates traffic features such as flow, time, and protocol anomalies. Koroniotis [6] targeted the identifi-
cation of botnets in IoT networks, more specifically botnets that exploit various traffic sources and large amounts 
of traffic from infected devices. Liao and Guan [7] proposed a multi-scale convolutional feature fusion network 
based on an attention mechanism, which was an excellent improvement in protocol anomaly detection and traffic 
variation detection based on deep learning techniques. Let the traffic features be represented by Fi for different 
scales, and the fused feature set can be expressed as: 

1
 

n

fused i i
i

F Fα
=

=∑ (2)

Where is αi the attention weight applied to the features Fi, which allows the network to focus on the most rele-
vant features for traffic anomaly detection.

Together, these works showcase the multifaceted nature of malicious traffic comprehension and identification 
in IoT networks. Spanning the application of machine learning to the analysis of traffic patterns, these works em-
phasize the indispensable contribution of traffic features to the continual protection of IoT environments.

2.2   Types and Sources of Attacks Generating Malicious Traffic

The cyber threat landscape against the IoT and smart devices is similarly becoming more heterogeneous and 
sophisticated, and it poses a significant threat to the security of connected systems. Common threats such as 
distributed denial of service (DDoS) attacks, spoofing, packet flooding, botnet propagation, man-in-the-middle 
attacks, and ransomware can generate malicious traffic that can have a substantial impact on the functionality and 
security of IoT devices and the IoT ecosystem in general. To combat these attacks, current research has attempted 
to provide a variety of new strategies. One promising strategy is to use software-defined networking (SDN) for 
monitoring devices to be compliant with manufacturer usage description (MUD) behavior profiles and combining 
this with machine learning techniques to monitor volumetric attacks such as DoS, reflection flooding, and ARP 
spoofing [8]. Let the total volume of network traffic be represented by Vtotal, and the malicious traffic volume by 
Vmal. The detection of volumetric attacks can then be expressed as:

_( , , )dos reflection arp spo fal om T TV Tf= (3)

Where Tdos , Treflection, Tarp_spoof , represent the traffic corresponding to different volumetric attacks (DoS, reflec-
tion flooding, and ARP spoofing). The approach leverages the programmability of SDN to facilitate real-time 
monitoring and effective threat management, demonstrating its feasibility in mitigating volumetric attacks. The 
ransomware threat in IoT systems has also received a lot of attention, with numerous studies investigating high-
tech approaches to identify ransomware attacks, such as artificial intelligence (AI), blockchain, and SDN [9]. 
Such research highlights the importance of adopting a multi-dimensioned approach to effectively fight the rich-
ness and dynamic nature of cyber attacks. Collective strategies leverage smart contracts for enabling mitigation 
of DDoS in the scope of SDN domains to provide flexibility, efficiency, and security in distributed exchange of 
threat information [10]. Additionally, deep learning has been applied in detecting DDoS attacks, wherein neural 
network frameworks identify complex application-layer DDoS activities [11]. Blockchain technology is also un-
der study to support data security in IoT usage, especially in intelligent healthcare, owing to its immutability and 
transparency [12]. With more sophisticated attacks taking place, it is imperative that research continues to devel-
op smarter detection and mitigation solutions that utilize smarter technologies like deep learning, blockchain, and 
SDN to secure IoT networks.

2.3   Behavioral Patterns and Traffic-Level Indicators

In network security, the identification of malicious activity in network traffic is now an essential challenge, espe-
cially with increasing amounts and complexities of IoT traffic. Scientists are resorting to flow-based features such 
as packet size, flow duration, burstiness, and entropy for enhancing detection systems. Ali’s [13] work added 
much value to this field by proposing a multi-task deep learning (DL) model for classifying traffic as malicious 
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or benign, and the type of malware. This research highlights the significance of traffic analysis based on behav-
ior in IoT systems and demonstrates that DL models can be used efficiently to identify malware based on traffic 
features. Another novel method is introduced by Fu [14], who introduced HyperVision, an unsupervised graph 
learning method to inspect encrypted malicious traffic.

Their method builds graph features from flow interaction patterns and can detect unknown attacks without 
labeled datasets, which is highly crucial to detect encrypted traffic behaviors typically overlooked by traditional 
detection methods. While Feng [15] were focusing on social robots, they also proposed a new approach to de-
tect malware based on traffic features. The importance of behavioral pattern analysis for network security is also 
emphasized. Their BotShape approach showed that the same flow-based behavioral features can be utilized to 
identify malicious activity in network traffic. Papadogiannaki and Ioannidis [16] had carried out a critical review 
of anomaly detection methods from encrypted traffic applying AI, further highlighting the issue and innovation 
in detecting anomalies of encrypted data streams, and Imtiaz [17] offered further insights about how flow-based 
features can be utilized in real-time as well as encrypted network environments. Overall, these studies illustrate 
the potential consensus that flow-based features play a critical role in detection of malicious activity in complex 
network settings. Deep learning models, graph learning without supervision, and AI-based anomaly detection 
techniques are improving detection accuracy, laying the basis for future research focused on further improving 
threat detection in complex networks.

3    Evaluation Metrics and Benchmark Datasets

In the field of IoT security, performance metrics such as accuracy, precision, recall, and F1 score are critical for 
evaluating and optimizing machine learning models. While datasets such as BoT-IoT and CICIDS2017 support 
intrusion detection, issues such as class imbalance and static data remain challenging. Advanced models can 
improve detection capabilities, but usually at an increased computational cost, highlighting the need to strike a 
balance between accuracy, efficiency, and practical deployment capabilities.

3.1   Performance Metrics for Security Effectiveness

With ML and DL techniques merging together, the field of cybersecurity has also evolved to a large extent to 
tackle more advanced cyber attacks and anomalies. The increasing complexity of network infrastructure, espe-
cially with the proliferation of IoT devices and cloud computing, highlights the need for stringent security mech-
anisms at play to quantify the performance of these intelligent security systems. Important performance metrics 
such as accuracy, detection rate, false alarm rate, precision, recall, F1 score, and AUC-ROC not only are required 
to quantify the performance of cybersecurity solutions, but also to fine-tune the detection algorithms in Table 1. 
In the field of IoT security, Rahim [18] studied the use of Logit-Boosted CNN models to enhance the security 
of smart homes, especially in the areas of anomaly detection and facial recognition. Although their work did not 
directly relate to performance measures, precision and recall would be one area of measuring the effectiveness 
of such models in differentiating between real users and intruders. Shagari [19] examined Logit-Boosted CNN 
models as part of fortifying smart home security, especially anomaly detection and face recognition. While their 
research does not specifically mention performance measures, precision and recall would be used in order to 
identify the accuracy of such models in being able to separate legitimate users from attackers, similarly high-
lighting the detection accuracy and false positive rate within their hybrid logistic regression (LR) model used for 
warding off SQL injection attacks in web applications and identifying such metrics as necessary for upholding 
system integrity as well as user trust. In speaker identification, the use of feature fusion and ML techniques to 
further optimize model performance further emphasizes metrics such as accuracy, precision, and recall, espe-
cially in challenging situations such as voice variation and ambient noise [20]. For network intrusion detection, 
Çoşkun and Çetin [21] contrasted the performance of CatBoost classifier in distinguishing between malicious and 
benign traffic with precision, recall, and F1 score identified as important metrics to accurately classify normal 
and abnormal network behavior. Finally, Liu [22] addressed ensemble learning for spam filtering on obtaining 
a tradeoff between high recall and low false positives, which is an important consideration for user-end applica-
tions. Together, these studies demonstrate the essential role of performance metrics in cybersecurity for inform-
ing algorithm improvement, model choice, and security standardization to counter the evolving cyber threats.
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Table 1. Summary table of the study

Study Focus area Key performance 
metrics

Insights

Rahim et al. [18] IoT security (Smart 
homes)

Precision, Recall
Focused on enhancing security via Logit-
Boosted CNN models, with precision and 
recall metrics being critical for differentiating 
between real users and intruders.

Shagari et al. [19] Smart home security 
(Anomaly detection 
& Face recognition)

Precision, Recall
Emphasized the importance of precision and 
recall in identifying attackers vs. legitimate 
users, and the need for accuracy in preventing 
attacks like SQL injection.

Jahangir et al. [20] Voice recognition Accuracy, 
Precision, Recall

Discussed the use of feature fusion and ML 
techniques in voice identification under 
challenging conditions, with key metrics to 
assess model effectiveness.

Çoşkun and Çetin [21] Network intrusion 
detection

Precision, Recall, 
F1 Score

Contrasted CatBoost classifier performance 
for identifying malicious vs. benign network 
traffic, highlighting precision, recall, and F1 
score for classification accuracy.

Liu et al. [22] Spam filtering Recall, False 
Positives

Addressed the tradeoff between high recall 
and low false positives in ensemble learning 
for spam filtering, crucial for maintaining user 
experience.

The changing IoT security landscape calls for reliable datasets to support network traffic analysis in ensuring 
efficient intrusion detection and security. Datasets such as TON_IoT, BoT-IoT, CICIDS2017, and N-BaIoT are 
now at the core of benchmarking a variety of intrusion detection systems (IDS) and network analytical platforms. 
Different challenges and possibilities face each dataset in the development of sophisticated security mechanisms 
for IoT networks. For example, the Bot-IoT [23] dataset provides a large dataset that includes both normal and 
synthetic IoT network traffic, which provides a rich source of botnet behavior to be detected in IoT networks. 
Although it is beneficial, issues such as class imbalance (benign instances overwhelmingly surpass malicious in-
stances) have been surmounted, and Wheelus et al. [24] used synthetic data creation techniques such as SMOTE 
to balance the data set and therefore improve the performance of machine learning algorithms. Similarly, the 
CICIDS2017 data set has received extensive attention due to its comprehensive nature of network traffic. Studies 
comparing machine learning models on this dataset have indicated the effectiveness of supervised and unsuper-
vised models in anomaly detection, which can be applied to IDS optimization. To address the class imbalance 
problem in CICIDS2017, Barkah et al. [25] suggested a generative model to improve the minority class repre-
sentation, thereby improving the precision and recall values in IDS application. In the case of N-BaIoT, machine 
learning techniques such as logistic regression and artificial neural networks have been utilized in the identifi-
cation of anomalies, with it being advised that there should be a compromise between feature engineering and 
model complexity in order to achieve high classification accuracy.

The TON_IoT dataset is dedicated to IIoT and IoT device telemetry data and is pivotal in encouraging the 
growth of IDS through the support of federated learning and hybrid machine learning algorithm usage. This sup-
ports the development of IDS frameworks that can handle the diverse and large amounts of data produced by IoT 
devices. Briefly, while datasets such as TON_IoT, BoT-IoT, CICIDS2017, and N-BaIoT are required to advance 
IoT security research, class imbalance and dynamic nature of network traffic are still issues. Future research can 
include creating more dynamic datasets in combination with federated learning, or exploring GANs to enhance 
existing datasets, such that IDS models are learned on data which actually reflects the changing threat landscape 
in IoT networks.

3.2   Comparative Summary of Reviewed Approaches

Recent research in the field of ML focuses on maximizing the accuracy of the model while ensuring computa-
tional efficiency, flexibility, and deployability across various applications. Significant areas where ML models 
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have great potential are power load forecasting, DDoS attack detection in IoT sensor systems, atmospheric 
chemistry modeling, forest fire detection, malicious URL identification, and plant water stress sensing. These 
applications highlight the need for robust ML models with the ability to strike a balance between high detection 
accuracy, minimal computational cost, and deployability in real-world applications in Fig. 1.

Rahman [26] demonstrated how an ML model that integrates big data analytics with deep learning better pre-
dicted power demand than the traditional method more precisely and in a more adaptable way, though at greater 
computational expense when using more sophisticated models. Similarly, in the banking domain, discovery of 
DDoS attacks was used to demonstrate the robustness of SVMs compared to other models such as KNN and ran-
dom forests (RF), but computational cost and usability during deployment were not experimented. In computa-
tional modeling of atmospheric chemistry, Keller [27] proposed a way to compromise computational cost without 
compromising precision, illustrating that deployability and flexibility are still second thoughts in models of such 
intricate systems. Sathishkumar [28] demonstrated increased accuracy in a forest fire alarm system using CNNs 
but at the expense of computational complexity, which indicates the trade-offs incurred in using advanced deep 
learning models in actual implementations. In other domains, such as malicious URL detection and water stress 
detection, ML model application has consistently enhanced detection precision but the challenges of computa-
tional cost, flexibility, and real-world deployment remain prominent. In brief, while ML models have made much 
improvement across disciplines, achieving an equilibrium between accuracy of detection and computational ef-
ficiency on the one hand and ease of deployment on the other remains problematic. This literature survey points 
toward the need for further research optimizing ML models in their applicability to real-world contexts, includ-
ing consideration not merely of performance metrics but also pragmatic constraints of operating these models on 
different operating contexts.

Fig. 1. Proposed workflow

4   Challenges of Intelligent Traffic Detection in IoT

IoT security faces many key challenges that hinder effective model training and real-world performance. 
Solutions such as resampling, semi-supervised labeling, and realistic dataset generation can improve detection 
reliability. As IoT environments vary widely, ensuring cross-domain generalization is critical, while techniques 
such as domain adaptation, meta-learning, and synthesis based on generative adversarial networks can enhance 
model adaptability. Real-time detection is limited by the resources of IoT devices. Optimized lightweight models, 
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edge computing, and hardware-software co-design help achieve fast and efficient inference. At the same time, 
machine learning models are still vulnerable to adversarial reasoning and membership inference attacks.

4.1   Data Imbalance, Labels, and Authenticity Gap

Effective detection of malicious traffic in IoT networks relies heavily on high-quality datasets. However, three 
persistent issues hinder progress: data imbalance, poor label quality, and lack of authenticity in simulated data-
sets. Data imbalance refers to the over-representation of benign traffic samples relative to malicious traffic sam-
ples, which causes the trained model to be biased towards the majority class and has difficulty identifying actual 
attacks. The formula to handle data imbalance using a weighted loss function is:

o( ), l g( )i i i
i

L p y w y p= −∑ (4)

Where pi is the predicted probability of class, yi is the ground truth for class, wi is the weight associated with 
class i to penalize the majority class.

Inaccurate or noisy labels can interfere with learning algorithms during training, further degrading model per-
formance. Active learning and semi-supervised methods can decrease this issue by allowing the model to query 
uncertain samples to be labeled by a human. The semi-supervised objective function for training with labelled 
and unlabelled data can be simply expressed as:

total supervised unsupervisedL L Lλ= + (5)

Where Lsupervised is the loss on labeled data, Lunsupervised is the loss on unlabeled data, and λ is a hyperparameter 
controlling the weight of the unsupervised loss.

4.2   Model Generalization and Cross-Domain Transfer Capability

A major challenge facing IoT traffic detection is to ensure that models trained in one environment can perform 
well in other environments, which is called generalization and cross-domain transfer capability. To ensure 
domain-invariant feature learning, one approach is the use of adversarial training, where the model learns 
features that cannot be easily distinguished between domains. The minimax optimization problem for domain 
adaptation can be expressed as:

[ ( ( ( )))] [ ( ( ( )))]1maxmin s tx P x P
G D

E log D G x E log D G x∼ ∼+ − (6)

Where G is the generator network that transforms source data to target data, D is the discriminator network 
that tries to distinguish between source and target domains. Given labeled source domain data, the classification 
loss is typically defined as the cross-entropy:

( ) ( ), ,total cls domainL L G C L D Gλ= + ⋅ (7)

In practice, this adversarial training is combined with a classification loss on the labeled source data:

( ) [ ],
1

( )1 ( )
s s s

K

cls x y y k s k
k

L E logC G x=
=

= − ∑ (8)

Where K is the number of classes, and C(G(xs))k is the predicted probability for class k.
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4.3   Real-time Constraints and Resource Limitations

IoT devices are often severely constrained in terms of processing power, memory, and energy consumption, 
which complicates the deployment of complex machine learning models. Real-time detection requires low-laten-
cy, high-throughput inference capabilities, which deep learning models cannot achieve without optimization. To 
optimize models for real-time processing, model compression techniques like pruning or quantization are com-
monly applied. The objective function for pruning can be expressed as:

0
( )minL

θ
θ λ θ+ (9)

Where L(θ) is the model’s loss function, ||θ||0 is the L-norm of the weights, representing the number of non-ze-
ro weights, and λ is a hyperparameter controlling the sparsity of the model.

Quantization reduces the precision of weights and activations, significantly reducing memory usage and 
inference time. A typical quantization operation can be represented as:

( )w round w
= ⋅∆

∆
 (10)

Where w is the original weight, ∆ is the quantization step size, w  is the quantized weight. Quantization-aware 
training introduces a loss term to penalize quantization error:

2

2
;( ( ))quantL L f x θ β θ θ= + ⋅ −  (11)

Where θ is the quantized version of θ , and β is a tuning hyperparameter.

4.4   Security and Robustness of Machine Learning Models

Machine learning models for IoT security are inherently vulnerable to attacks. Adversarial attacks can subtly 
modify input traffic to deceive the model, while membership inference attacks attempt to extract information 
about the data used during training. A robust loss function designed to defend against adversarial perturbations is 
the adversarial training loss, which includes adversarial samples generated by a separate model. The robust ob-
jective can be formulated as:

( )( ) [ ( )], ,adv x A xL x y E L x y′∼= ′ (12)

Where A(x) generates adversarial samples for a given input x, ( )' ,L x y  is the loss on the adversarial sample 

x′, y is the label of the original input. Adversarial attacks exploit the sensitivity of models to carefully crafted, 
small perturbations. These perturbations may not affect the overall semantics of the traffic, but may significant-
ly change the model’s predictions, leading to false positives or false negatives. On the other hand, membership 
inference attacks exploit the model’s behavior to determine whether a specific data point belongs to the training 
dataset. Such vulnerabilities highlight the importance of not only optimizing detection accuracy but also enforc-
ing the confidentiality and integrity of the underlying model.

Defending against these threats requires a robust training procedure. One approach is adversarial training, 
which introduces perturbed samples during the model learning process to enhance resilience. Defensive distil-
lation can also be used to smooth the decision boundaries of the model, making it more difficult for attackers to 
exploit subtle changes in Fig. 2. Anomaly detection wrappers (external models that monitor output anomalies) 
provide an additional layer of security, especially in mission-critical systems.

Another important aspect of robustness is ensuring that models remain effective even in the face of evolving 
threats and changing data patterns. Continuous learning techniques are essential to maintaining up-to-date detec-
tion capabilities. In addition, ensemble learning can improve robustness by compensating for the weaknesses of 
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individual models and reducing the likelihood of simultaneous failures.
Model interpretability is equally important. In high-risk applications, decision transparency enables human 

analysts to trace, verify, and understand the rationale behind an alert or classification. Techniques in Explainable 
Artificial Intelligence (XAI), such as SHAP values, integrated gradients, and attention heatmaps, can reveal the 
internal decision logic of complex models such as deep neural networks. This is critical not only for model de-
bugging and regulatory compliance, but also for building trust among system operators.

Ultimately, achieving robust and explainable machine learning systems for IoT security is not a one-and-done 
solution, but an ongoing process. It involves building resilience into every stage, from model training to deploy-
ment, while ensuring that explanations are accessible and actionable. This dual emphasis on security and trans-
parency ensures that machine learning-driven IoT defenses are not only robust but also reliable and traceable in 
the face of real-world challenges

.

Fig. 2. Proposed framework for constructing robust malware detection model(s) using adversarial attack and defense strate-
gies

5   Experiment on Machine Learning Models for IoT Traffic Detection

In an experimental comparison using the BoT-IoT dataset, deep learning-based Model A significantly outper-
formed traditional Model B in all key metrics. Confusion matrix analysis further confirmed Model A superior 
ability to detect malicious traffic and minimize false positives. Traditional models, while simpler and more re-
source-efficient, struggle with complex IoT traffic patterns. Deep learning models, while more computationally 
demanding, have better generalization, adaptability, and reliability, making them more suitable for practical IoT 
security applications.

5.1   Experimental Design

To evaluate the performance of machine learning models in IoT malicious traffic detection, we built a compre-
hensive and controlled experimental framework. The framework is designed to evaluate the effectiveness of two 
widely used modeling paradigms. Model A adopts advanced deep learning architectures such as convolutional 
neural networks (CNNs) and long short-term memory networks (LSTMs). These models are well suited to cap-
ture the complex spatiotemporal characteristics of network traffic patterns in dynamic IoT environments. CNNs 
excel at extracting local spatial features from traffic data, while LSTMs are able to learn long-term dependencies 
and sequences, which makes them particularly useful in time series classification tasks.

On the other hand, Model B represents traditional machine learning methods. Such algorithms include support 
vector machines (SVMs) and random forests (RFs), among others. Unlike deep learning models that automat-
ically learn features, these models rely on manually designed features based on domain knowledge. Although 
they are less computationally intensive and easier to interpret, they may struggle to cope with the complexity and 
variability of IoT traffic data.

The experimental study uses the BoT-IoT dataset, a publicly available benchmark dataset containing a rich 
set of normal and attack traffic, including DDoS, DoS, reconnaissance, and information theft. The dataset was 
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preprocessed to remove redundant and irrelevant features, normalize continuous values, and encode categorical 
variables. After preprocessing, the data was split into training and test sets in a 70:30 ratio to ensure that the eval-
uation metrics reflect the generalization ability of the model.

To ensure a fair comparison, Model A and Model B were trained under the same computing settings. The hy-
perparameters of each model were optimized using a grid search method, which exhaustively searches a set of 
predefined parameters to determine the best performing configuration. This tuning process is critical to maximize 
model performance and avoid underfitting or overfitting.

To evaluate the models objectively, four performance metrics were used. Accuracy measures the proportion of 
correctly classified instances to all instances. Precision calculates the ratio of true positive predictions to the total 
number of positive predictions, indicating the model’s ability to minimize false positives. Recall determines the 
ratio of true positive predictions to the actual number of positive examples, reflecting the sensitivity of the model 
to detect attacks. Finally, the false positive rate (FPR) measures the proportion of benign traffic that is misclassi-
fied as malicious traffic, which is critical in the real world as false positives can overwhelm system administrators 
and reduce people’s trust in intrusion detection systems (IDS).

The results of this experimental setup not only enable us to conduct a rigorous comparison between deep 
learning and traditional methods, but also help us gain insight into the trade-offs between computational com-
plexity, detection performance, and practical deployment feasibility. The framework ensures reproducibility and 
can be extended to evaluate other machine learning models or datasets, laying a solid foundation for future re-
search on intelligent IoT security systems.

5.2   Results and Discussion

This Fig. 3 provides a comprehensive and visual comparison of two machine learning models: Model A, which 
is based on a deep learning architecture, and Model B, which uses traditional machine learning methods. Model 
B was evaluated based on four core performance metrics: Accuracy, Precision, Recall, and False Positive 
Rate. These metrics are critical to evaluating the effectiveness and usefulness of intrusion detection systems in 
environments, where network integrity and operational continuity are critical.

 

 

 

Fig. 3. Bar chart of Accuracy, Precision, Recall, FPR

Starting with accuracy, which represents the overall percentage of correctly classified instances, Model A 
significantly outperforms Model B. Model A has an accuracy of 97%, while Model B has an accuracy of only 
91%. This result suggests that deep learning models are better able to capture the overall structure and variation 
of network traffic data, resulting in fewer misclassifications. In security systems, high accuracy is a strong 
indicator of model reliability and is critical to maintaining trust in automated decisions.

Accuracy, which refers to the ratio of a model’s true predictions to all positive predictions, is another indicator 
that Model A clearly outperforms. Model A’s accuracy is 95%, while Model B’s is 90%, proving that Model A is 
more effective in reducing false positives. This is critical in operational environments, as too many false positives 
burden administrators and may cause them to overlook real threats.

Recall, which measures the model’s ability to detect actual malicious traffic by calculating the proportion of 
true positive cases to the total number of actual positive cases, highlights another advantage of Model A. Its recall 
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rate is 97.5%, significantly higher than Model B 90%. This difference means that Model A is more successful in 
detecting most malicious traffic, reducing the likelihood of undetected violations, which is particularly important 
in scenarios involving sensitive data or critical services.

False positive rate, a key metric in real-world deployments, shows a significant gap. This metric refers to 
the proportion of traffic that is incorrectly classified as malicious. Model A has a lower false positive rate of 
1.8%, while Model B has a much higher false positive rate of 4.3%. A lower false positive rate is critical in IoT 
networks, as unnecessary blocking of legitimate traffic can lead to functional disruptions, communication delays, 
or a degraded user experience. Especially in critical environments such as smart grids or healthcare systems, 
minimizing false positives ensures stable and trustworthy system behavior.

These performance differences highlight the ability of deep learning models to identify and generalize complex 
spatiotemporal relationships in IoT traffic data. These models can automatically learn multi-level features directly 
from raw input without relying on human input, which improves their adaptability and scalability. However, 
deep learning models require a lot of computing resources, including more memory and processing power, which 
may limit their usability in resource-constrained IoT devices. To alleviate this problem, techniques such as model 
pruning, quantization, knowledge distillation, and edge-cloud integration can be applied to reduce model size and 
latency while maintaining accuracy.

In summary, the bar charts demonstrate the huge advantages that deep learning provides in IoT traffic 
detection across multiple metrics. While traditional models are still useful in lightweight applications, deep 
learning solutions provide higher detection performance, higher reliability, and better generalization, making 
them strong candidates for smart security systems in next-generation IoT deployments.

The Fig. 4 for Model A and Model B provide an in-depth assessment of their classification behavior in 
detecting IoT network traffic, especially in distinguishing between benign and malicious samples. These 
visualizations not only allow for comparative performance analysis, but also provide insights into how each 
model handles different categories, highlighting their strengths and weaknesses in actual operation. Taking the 
deep learning-based Model A as an example, the matrix shows that it correctly classified 930 benign instances 
and 1035 malicious instances. The total number of misclassifications is very low, with only 35 instances, of 
which 20 benign samples were incorrectly labeled as malicious and 15 malicious samples were missed. The 
normalized values further demonstrate its excellent performance: the recall rate for malicious traffic is 98.6% and 
the recall rate for benign traffic is 97.9%. This means that the model is highly sensitive to both attack and non-
attack traffic, thereby minimizing threat exposure and minimizing interference with legitimate communications. 
Its accuracy is also very high, with 98.1% of malicious samples and 98.4% of benign samples being correctly 
classified. Additionally, the false positive rate was only 1.6%, which is critical to reducing unnecessary alerts that 
could otherwise cause alert fatigue or performance degradation in automated response systems. 

 

 

Fig. 4. Confusion matrices

In contrast, Model B, which represents traditional machine learning, performed significantly worse. It misclas-
sified 80 benign samples as malicious, with a false positive rate of 8.4%. At the same time, it failed to detect 49 
malicious instances, with a false positive rate of 4.7%. These flaws are particularly concerning in IoT environ-
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ments, where undetected attacks can compromise device functionality or data integrity, while false positives can 
disrupt mission-critical services. The overall recall rate for benign traffic dropped to 91.6%, while the malicious 
recall rate remained high at 95.3%. However, its precision was lower than Model A, especially for benign sam-
ples, which means that the incidence of false positives was higher.

These differences highlight a key point: while traditional machine learning methods may work for simpler 
scenarios or situations where computing resources are highly constrained, they often struggle with the complexi-
ty and high dimensionality of IoT network traffic. They rely on hand-crafted features and may not capture subtle 
or evolving attack signatures. Model A, through its deep learning architecture, can use spatiotemporal learning to 
infer complex patterns that vary over time and space, thereby improving its adaptability and robustness to known 
and new threats.

In real-time applications, both detection accuracy and system reliability are critical, and these results strongly 
support Model A. Its lower false positive and false negative rates ensure fewer interruptions and enhance peo-
ple’s trust in the automated decision-making process. This is critical for deployment in smart homes, industrial 
control systems, medical IoT, and other critical infrastructure areas.

6   Conclusion 

In summary, the experimental results of this study clearly demonstrate the effectiveness of machine learning 
for detecting malicious traffic in IoT environments. By using performance metrics and confusion matrices for 
comparative analysis, we verified that deep learning models significantly outperform traditional machine learn-
ing methods in terms of accuracy, precision, recall, and false alarm rate. However, while these results affirm the 
technical feasibility of intelligent detection systems, they also reveal several unresolved challenges that must be 
addressed for successful deployment in real-world applications. One of the most important issues is the reliance 
on outdated or overly simplified datasets that do not accurately reflect the ever-changing heterogeneous nature of 
real IoT traffic. This gap in data authenticity hinders the generalization ability of trained models and limits their 
performance in dynamic environments facing unknown threats. To improve the effectiveness of real-world appli-
cations, future research should prioritize the development and use of rich and continuously updated datasets that 
capture the operational diversity of IoT deployments. Another significant challenge lies in the inherent computa-
tional limitations of edge IoT devices. Despite their superior performance, deep learning models are resource-in-
tensive, which limits their deployment on devices with limited processing power, memory, and energy availabil-
ity. This highlights the urgent need for lightweight, optimized models that can reduce computational overhead 
while providing comparable detection accuracy. Integrating techniques such as model compression, quantization, 
and neural architecture search is essential to building viable edge computing models. In addition, the lack of ex-
plainability in most machine learning-based intrusion detection systems presents another obstacle. These systems 
often act as black boxes with little transparency into the decision-making process. In mission-critical applications 
such as healthcare and industrial automation, explainability is essential for debugging, regulatory compliance, 
and building stakeholder trust. Therefore, future work should focus on integrating explainable artificial intelli-
gence (XAI) techniques that can provide meaningful insights into model behavior without compromising per-
formance. Security and robustness are also pressing issues to be addressed. As attackers increasingly target ma-
chine learning models through evasion and poisoning attacks, building resilient detection mechanisms is critical. 
However, research on adversarial defenses remains relatively weak in the field of IoT. There is a growing need 
for comprehensive approaches that combine robustness with transparency to ensure national defense strength and 
operational reliability. Finally, the lack of standardized evaluation protocols and benchmarking frameworks hin-
ders reproducibility and objective comparison between studies. Establishing shared benchmarks covering diverse 
datasets, model evaluation metrics, and deployment scenarios would significantly advance the field and promote 
more systematic innovation.
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