Low-Complexity Parallel Systolic Architectures for Computing Multiplication and Squaring over GF(2^{m})

Chiou-Yng Lee*
Department of Computer Information and Network Engineering
Lunghwa University of Science and Technology
Taoyuan, Taiwan
PP010@mail.lhu.edu.tw

Received 19 November 2008; Revised 10 December 2008 ; Accepted 20 December 2008

Abstract

Recently, cryptographic applications based on finite fields have attracted much interest. This paper presents a unified systolic multiplier under the method of the multiply-by- x^{2} and the folded technique. This circuit is particularly suitable for implementing multiplication and squaring in $\operatorname{GF}\left(2^{m}\right)$. The results show that our proposed multiplier saves up to 75% space complexity and 50% latency as compared to the traditional multipliers proposed by Yeh et al. and Wang-Lin. Also, the proposed squarer saves about 45% space complexity as compared to the traditional squarer presented by Guo and Wang.

Keywords: finite field, polynomial basis, systolic architecture, MSB-first multiplication algorithm

References

[1] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977.
[2] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, New York: Cambridge Univ. Press, 1994.
[3] R.E. Blahut, Fast algorithms for digital signal processing, Reading, Mass.: Addison-Wesley, 1985.
[4] I.S. Reed and T.K. Truong, "The Use of Finite Fields to Compute Convolutions," IEEE Transactions on Information Theory, Vol. IT-21, No.2, pp.208-213, 1975.
[5] B. Benjauthrit and I.S. Reed, "Galois Switching Functions and Their Applications," IEEE Transactions on Computers, Vol. 25, No. 1, pp.78-86, 1976.
[6] C.C. Wang and D. Pei, "A VLSI Design for Computing Exponentiation in GF(2^{m}) and Iits Application to Generate Pseudorandom Number Sequences," IEEE Transactions on Computers, Vol.39, No.2, pp.258-262, 1990.
[7] C.S. Yeh, S. Reed, and T.K. Truong, "Systolic Multipliers for Finite Fields GF(2^{m})," IEEE Transactions on Computers, Vol. 33, pp. 357-360, 1984.
[8] C.L. Wang and J.L. Lin, "Systolic Array Implementation of Multipliers for GF(2^{m})," IEEE Transactions on Circuits and Systems II, Vol. 38, pp. 796-800, 1991.
[9] B.B. Zhou, "A New Bit-Serial Systolic Multiplier over GF(2^{m})," IEEE Transactions on Computers, Vol. 37, No. 6, pp. 749-751, 1988.
[10] J.H. Guo and C.L. Wang, "A New Systolic Squarer and Its Application to Compute Exponentiations in GF(2 $\left.{ }^{\mathrm{m}}\right)$ " Proceedings of 1997 IEEE International Symposium on Circuits and Systems, Vol. 3, pp.2044-2047, 1997.
[11] C.L Wang and J.H. Guo, "New Systolic Arrays for $A B^{2}+C$, Inversion, and Division in GF(2m)," IEEE Transactions on Computers, Vol. 49, No. 10, pp.1120-1125, 2000.

[^0]Lee: Low-Complexity Parallel Systolic Architectures
[12] C.Y. Lee, E.H. Lu, and J.Y. Lee, "Bit-Parallel Systolic Multipliers for GF(2 ${ }^{m}$) Fields Defined by All-One and EquallySpaced Polynomials," IEEE Transactions on Computers, Vol. 50, No. 5, pp. 385-393, 2001.
[13] C.Y. Lee, E.H. Lu, and L.F. Sun, "Low-Complexity Bit-Parallel Systolic Architecture for Computing $\mathrm{AB}^{2+} \mathrm{C}$ in a Class of Finite Field GF(2 2^{m})," IEEE Transactions on Circuits and Systems II, Vol. 50, No. 5, pp. 519-523, May 2001.
[14] C.Y. Lee, "Low-Complexity Bit-Parallel Systolic Multiplier over GF(2 ${ }^{m}$) Using Irreducible Trinomials," IEE Computers and Digital Techniques, Vol. 144, No. 1, pp. 39-42, 2003.
[15] C.Y. Lee, J.S. Horng and I.C. Jou, "Low-Complexity Bit-Parallel Systolic Montgomery Multipliers for Special Classes of GF(2 $\left.{ }^{m}\right)$," IEEE Transactions on Computers, Vol. 54, No. 9, pp. 1061-1070, 2005.
[16] C.Y. Lee, "Low-Latency Bit-Parallel Systolic Multiplier for Irreducible $x^{m}+x^{n}+1$ with $\operatorname{gcd}(m, n)=1, "$ IEICE Transactions on Fundamentals, Vol.E86-A, No.11, pp. 2844-2852, 2003.
[17] S. Kwon, C.H. Kim and C.P. Hong, "A Systolic Multiplier with LSB First Algorithm over GF(2m $)$ Which Is As Efficient As the One with MSB First Algorithm," Proceedings of the 2003 International Symposium on Circuits and Systems, Vol. 5, pp.V-633-636, 2003.
[18] C.L. Wang, "Bit-Level Systolic Array for Fast Exponentiation in GF(2 ${ }^{m}$)," IEEE Transactions on Computers, Vol. 43, No. 7, pp.838-841, 1994.
[19] C.L. Wang and J.L. Lin, "A Systolic Architecture for Computing Inverses and Divisions in Finite Fields GF(2 $\left.{ }^{\mathrm{m}}\right)$, " $I E E E$ Transactions on Computers, Vol. 42, No. 9, pp. 1141-1146, 1993.
[20] G. Seroussi, "Table of Low-Weight Binary Irreducible Polynomials," Visual Computing Dept., Hewlett Packard Laboratories, Aug. 1998. Available at: http://www. hpl.hp.com /techreports/98/ HPL-98-135.html.
[21] W. Stahnke, "Primitive Binary Polynomials," Mathematics of Computation, Vol.27, pp. 977-980, 1973.
[22] S.Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ: Prentice-Hall, 1988.
[23] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: a System Perspective, Addison-Wesley, Reading, MA, 1985.

[^0]: * Correspondence author

