
Estimating Security Risk for Web Applications using Security Vectors

Hui Guan1, 3, ＊, Wei-Ru Chen1, Lin Liu2, and Hong-Ji Yang3

1 School of Computer Science and Technology,

Shenyang University of Chemical Technology,

Shenyang , China

guanh1999@126.com, willc@china.com

2 School of Software,

Tsinghua University,

Beijing, China

linliu@tsinghua.edu.cn

3 Software Technology Research Laboratory,

De Montfort University,

Leicester, England

hyang@dmu.ac.uk

Received 18 September 2011; Revised 12 January 2012; Accepted 15 February 2012

Abstract. Risk assessment has been getting increased attention as the new vulnerabilities and threats are
emerging on daily basis. The popularity and complexity of web application present challenges to the security
implementation for web engineering. It is well known that the earlier to perform risk assessment for software,
the less cost needed to mitigate the security risks. However, quantitative estimation of security in the earlier
stage of software development life cycle is largely missing. In this paper, we propose a quantitative approach
to perform risk assessment at design stage for web application which is based on multiple security vectors of
asset, threat and vulnerability. An environment-driven method is proposed to elicit threats to the system. In
the end, the risk assessment methodology is applied on a customer goods case study.

Keywords: risk assessment; threat; security; asset; vulnerability; design stage

1 Introduction

The ease of implementation and use of web technologies has made them an omnipresent and essential compo-
nent of online commercial sites, intranet and extranet application, as well as the internet services offered and
used by companies, which creates new challenges for the web engineering. This is because web applications
open systems and information to be accessed by public. In this type of software, requirements have become
more complex, in order to guarantee information security [1]. Comprised web server can damage organizations
in many ways, from surrendering customer privacy data and accepting fraudulent transactions to indirectly dam-
aging corporate reputation as the result of defaced homepage. Report has shown that web applications account
for 80 percent of internet vulnerabilities in the second half of 2008 and rose in prevalence by about eight percent
from the first half of the year [2]. Security in web engineering has become an emergent task.

Given the increasing complexity and frequency of web application risks, decision makers must take action to
sufficiently protect the web applications. However, security as an architectural driver is often at the expense of
performance (e.g. component redundancy), usability (e.g. complexity of using the application) and cost (e.g.
using SSL to implement HTTP requires PKI or third party certificates, slows traffic, etc.). Most development
companies are having a tough time balancing all of these factors [3]. Thus, many organizations bring security to
the forefront of web applications design only after an incident occurs. The result is generally an expensive, knee-
jerk reaction to security problems that might have been avoided with intelligently planned controls [4]. There is
no denying the fact that web application addressed as early as the design stage, during development and integra-
tion, and throughout the life cycle of the application. It must be an integrated component of the application and
not be added on at the end of the development cycle. It is a far more cost efficient and effective way than apply-
ing security features in a haphazard manner.

＊Correspondence author

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

55

Risk assessment is a process of assessing the security level in a quantitative or qualitative mode of an organi-
zation by evaluating one’s exposure to the threats to its assets and operating capabilities. Risk assessment for
web application is one of the effective methods to help decision makers determining how much they need to
invest in security so as to achieve a desired level. Doing this ensures that all risks have been taken into account
and makes it possible to find appropriate security solutions and measures based on the likelihood and impact of
identified potential risks. Threat risk modeling methods can be used to facilitate this process.

In this paper, we extend our previous work in [25] to a quantitative risk assessment model which can be used
in software design stage to anticipate the risk level. A quantitative method is depicted to ease assessing risks for
web application by defining web application classifications which is proposed taking consideration of security-
related environmental factors. The remainder part of this paper is arranged as follows. Section 2 reviews the
related works in this area. Section 3 illustrates our proposed model and its detailed context, while Section 4
elaborates the proposed approach by a case study and results have been discussed. Finally, Section 5 concludes
by summarizing the key contributions and outlining the future steps.

2 Related Works

Making risk management an integral part of the software development process allows it to drive the develop-
ment process so that security issues are ameliorated early in the product’s life [29]. Developers are expected to
identify, rank, mitigate and manage risk throughout the software product life cycle. Methodologies such as tradi-
tional risk assessment approaches, threat and vulnerability identification that are used to allow risk to drive the
development process have in large part been qualitative in nature.

We would like to stress that the class/style files and the template should not be manipulated and that the
guidelines regarding font sizes and format should be adhered to. This is to ensure that the end product is as ho-
mogeneous as possible.

2.1 Risk Assessment

There are methods and tools confirm the state of the art in risk assessment, such as MAGERIT, CRAMM and
OCTAVE. British government encourages industry using certification based on BS7799 [26], which is the in-
formation security management standard. They regulate that risk analysis should be included in information
security management system establishment. Each method and tool has its own benefits. However, they do not
address specific aspects apply to web application.

 SP 800-30, Fips 65 [30] is the Risk Management Guide for Information Technology Systems developed by
the National Institute of Standards and Technology. MAGERIT is an open methodology for Risk Analysis and
Management, developed by the Spanish Ministry of Public Administrations, offered as a framework and guide
to the Public Administration [31]. OCTAVE [33] is a heavyweight risk methodology approach originating from
Carnegie Mellon University’s Software Engineering Institute (SEI) in collaboration with CERT. OCTAVE
focuses on organizational risk, not technical risk. However, OCTAVE is large and complex, with many
worksheets and practices to implement and it does not provide a list of “out of the box” practices for assessing
and mitigating web application security risks.

CVSS is a complicated scoring system composed of three metric groups developed by the US Department of
Homeland Security (DHS) [32]. The disadvantage of CVSS is that it does not find or reduce the attack surface
area or help enumerate risks within the target system.

 Except for the risk assessment methods and tools discussed above, there are many methods proposed to fig-
ure out the risk assessment for web application [1], [34], [35]. Cock D. et al. [34] used threat modeling for secu-
rity tokens in web applications. They pointed out all the possible threats of web-applications, but missed the
threats related to the environment where the applications were hosted. Brunil et al. [1] proposed a methodologi-
cal tool for web application focused on one of the risk assessment steps--asset identification. [1] and [35] use
STRIDE model to perform the risk assessment for web application but lack of threat identification. [20] propose
a flow-based model to identify and classify the threats for web applications.

2.2 Threat Identification

Threat elicitation is within the domain of software security requirement. In our earlier work, we focus on the
security design using social modeling concept [22], [23] and a systematic evaluation of security requirements is
proposed [24], [25]. A 3-dimensional vector for quantitative evaluation of security requirements has been pro-
posed, which takes into account the importance of assets to be protected, the vulnerability of the system and the

Journal of Computers Vol. 23, No. 1, April 2012

56

trustworthiness of environment [24]. Social modeling concept is used to analyze the business and organizational
context of systems with regard to security [22], [23].

In terms of threat elicitation, several methods have been proposed. One type of proposed method is abuse
cases, misuse cases approaches [5]-[8] which can be used once the system use cases have been created. Abuse
and misuse cases [5]-[7] are independent use cases initiated by external attackers to the system which can be
defined as a sequence of actions, including variants, that a system or other entity can perform, interacting with
misusers of the entity and causing harm to some stakeholder if the sequence is allowed to complete [5].Threat
can be elicited by analyzing misuse cases. The goal of misuse cases is to decide and document a priori how
software should react to illegitimate use. [8] extends the misuse cases to misuse activities which are analyzed to
see how it could be subverted to produce a misuse of information, as a result, a set of threats can be listed. How-
ever, the practical method for creating misuse cases or activities is usually with the process of brainstorming [5].

The threat modeling approach [9]-[12], [16] is another approach which gives a clear idea of how to elicit,
classify, prioritize and mitigate threats. Especially, some threat modeling approaches are designed for web appli-
cations [13]-[15]. Tøndel et al [10] shows that threat modeling often is considered as an important part of the
requirements phase, as well as an iterative process, continuously revisited throughout the software lifecycle.
Oladimeji et al. [16] propose a goal-oriented approach to threat modeling where the notions of negative soft-
goals are used for representing threats. In [13] a comprehensive approach is provided to building highly secure
and feature-rich web applications using the .NET Framework. [14] elaborates, illustrates and discusses the threat
modeling process and its usefulness to the architectural designs of an e-banking application. Although threat
modeling is seen as a thorough approach to threat elicitation, mitigation and management, however, it demands
information available only at late design time which drives the security design to start in the middle of the soft-
ware development life cycle.

Another method to elicit the threat is problem frame [17], [18]. A problem frame characterizes a class of sim-
ple problem. Realistic problems are seen as compositions of simple problems of recognized to elicit and analyze
software security requirements [18], [19]. Hatebur et al. [19] describe a security engineering process to develop
security systems based on problem frames, and a collection of security patterns, plus components as the way to
deal with the solution. While problem frames appear useful in some cases, they are not as useful for a complete
design as UML. Also, they are not so widespread.

The above risk assessment has focused on process/method of general risk analysis, but our focus is to assess
risk at design stage using security risk vectors. It assists many organizations to apply risk analysis in their early
development stage.

3 Proposed Approach

In order to make a precise description of our proposed model, the concepts involved in the proposed risk analy-
sis approach should be identified and defined.
 Asset is “anything that has value to the organization” and which therefore requires protection.
 Threat is the potential cause of an unwanted event (i.e., an attack), which may result in harm of a system or

organization.
 Vulnerability is a weakness of an asset or control (i.e., in ISO 27000-series a control is a synonym of a coun-

termeasure), which may be exploited by a threat. This general definition covers all threats categories.
 Risk is the combination of the probability of an event and its consequence.
 Attack is an attempt to destroy, expose, alter, disable, steal or gain unauthorized access to or make unauthor-

ized use of an asset.

Fig. 1. Security concepts relationship

Remark 1.Fig. 1 shows how different security factors, involved in risk analysis, are related. It is obvious that
the target of attack is the assets whose vulnerabilities are exploited by threats which in turn lead to risks and do
harm to assets.

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

57

In this paper, we propose a quantitative risk assessment method for web application taking consideration of
criticality of asset, threat and vulnerability.

Fig. 2. Proposed risk analysis process

Our propose model consists of five phases with difference phases in different colors. More than one steps may
be needed for every phases. Here are the detailed meanings of each phase.
Phase 1: Architecture and Environment Analysis

Step 1: Architecture Analysis. System architecture analysis is the recognition process of entire system archi-
tecture and business processes so as to precisely understand the platform structure, security boundary, business
processes, internal and external environment of the target system. The system architecture model can be estab-
lished which is the foundation for data flow analysis.

Step 2: Application Type Identification. In order to have a precise risk estimation of the target web applica-
tion, it needs to be classified into one of types (from web-app1 to web-app6) according to our web application
classification. When it is done, the security risks of this kind of web application can be evaluated preliminarily.
Phase 2: Key Asset Analysis

Step 1: Key Assets Identification. In this step, recognition and analysis of the key information assets that is
the key data and services which determine system security should be identified. The key information assets are
the kernel for risk assessment.

Step 2: Asset Criticality Ranking. The criticality of assets is determined based on the type of information han-
dled in the applications.
Phase 3: Threat Analysis

Step 1: Threats Identification. Threat identification is the process of recognizing the threats related to each
key asset identified in phase 2. The result of threat identification is a list of threats associated with the target
system. In this case, we use our EDTE [25] method to elicit threats for web applications.

Step 2: Threat Quantification. Threat quantification is an important step to risk assessment and it is the proc-
ess of quantifying the threats listed in the previous step by using threat risk assessment model DREAD [36]
which is part of a system for classifying computer security threats used at Microsoft. It provides a mnemonic for
risk rating security threats using five categories. A risk value may be calculated to each threat after this step.
Phase 4: Vulnerability Analysis

Step 1: Vulnerability Identification. The diagnosis tools of network and host vulnerability can be used to per-
form vulnerability analysis. A list of system vulnerabilities can be detected after this step.

Step 2: Vulnerability Security Scoring. There are a number of vulnerability “scoring” systems such as Com-
mon Vulnerability Scoring System (CVSS)[32]. We can perform CVSS to rate each vulnerability that identified
from the previous step, and produce a total score for the vulnerability of system.
Phase 5: Risk and Security Strategy Analysis.

Step 1: Potential Risk will be evaluated based on the results of asset, threat and vulnerability analyses using
our security vector <A, T, V> formula (1).

Step 2: Security Strategy. Safeguards and their appropriateness are investigated and analyzed in this process.
The validation of the new safeguard applied in the future needs to be also checked.

Journal of Computers Vol. 23, No. 1, April 2012

58

Fig. 3. Security vectors

From Fig.3 we can conclude that the computation of security evaluation vectors is the combination of the fac-
tors themselves (A for Asset, T for Threat, V for Vulnerability) and the weight of each factor.

SV= WvVWtTWaA 222 (1)

Where Wa for the weight of asset, Wt for the weight of threat and Wv for weight of vulnerability. The values

of Wa, Wt and Wv range from 1 to 1. In this case, taking consideration of importance of each factors, the
weights of them are the same which can be formulized as

SV= 3
VTA 222 ）（ . (2)

3.1 Classification of Web Application

All web-applications are not same, the architecture and its supporting systems could be different for each appli-
cation depending on the complexity, but the resources or techniques needed for running those applications may
be same. So, it is possible to create a common threat model and identify all possible threats that can be used for
all web-applications [20]. The Web Application Classification is a cooperative effort to clarify and organize the
types of web application with different security risk level so as to ease the process of threats identification. It
helps you to identify which threats are relevant to your application through the proposed model.

As has discussed in Section 1, the risks web application faced are certain to be different when they are hosted
in well secured and non-secure environments. Thus, it is necessary for us to take consideration of the web appli-
cation type before further discussion.

For the consideration of the environment where web application hosted, three attributes of web applications
have been taken into account, which are the usage scope, target user and connectivity mode. Then, the circum-
stances of all the attributes of web application are listed in Table 1. Some symbols are used to represent these
attributes, US (Internal use only, Internal and External use, External use only) for the usage scope and its values,
TU (Known users, anonymous) for target user, and CM (Intranet, VPN, Internet) for connection mode.

Table 1. Attributes of Web Application

Usage Scope (US) Target User (TU) Connection Mode (CM)
Internal use only (US1) Know users (TU1) Intranet (CM1)
Blended use (US2) Anonymous (TU2) VPN (CM2)
External use only (US3) Internet (CM3)

The number of web application types abbreviated as WA equals to:

WA= Card(Domain(US)) ×Card(Domain(TU)) ×Card(Domain(CM)) . (3)

Where Card(Domain(US)) denotes the cardinality of Domain(US). There should be 18 web application types

according to the formula 3. However, some of them are not applicable in real web application which should be
ignored. For example, the combinations of (US1, TU1, CM3) or (US1, TU2, CM3) are not incompatible. All of

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

59

the applicable web application types are listed in Table 2 with the bigger value the higher possibility of risk level.

Table 2. Web Application Classification

ID Name Attribute Definition Security risks

WA1

Internal use
facing known
users via
intranet

US1
TU1
CM1

Application used primarily
on the internal network of
an organization for a mount
of known users.

This kind of applications is designed for
internal use so that only internal users can
access from intranet. Therefore, the security
risk is considered as low.

WA2

Internal
blended
External use
facing known
users via VPN

US2
TU1
CM2

Application used primarily
on the internal network of
an organization, but a mount
of known external clients
can access through VPN

The security risk is low but there are
possibilities for sharing user-credentials,
impersonation and sniffing on the external
client site.

WA3

External use
facing known
users via
Internet

US3
TU1
CM3

Application used for
external use. A mount of
known users can access
from internet

The security risk is a bit higher compared to
previous types because it is exposed to all
kinds of attacks from internet, however, it is
not very high for only known users can
access

WA4

External use
facing public
users via
Internet

US3
TU2
CM3

Application used for
external use. Public users
can access from internet

The security risks of these applications are
considered little bit high compared to
previous types since they are open to public
from Internet

WA5

Internal
blended
external use
facing known
users via
Internet

US2
TU1
CM3

Application used for internal
users and external known
users from Internet

The security risks of these applications are
higher due to their design complexities.
Usually, this kind of applications are
designed primarily for internal use, it is a
little more dangerous when known users
access from Internet

WA6

Internal
blended
external use
facing public
users via
Internet

US2
TU2
CM3

Application used for internal
users and external public
users from Internet

The security risks of these applications are
highest due to their design complexities.
Usually, this kind of applications are
designed primarily for internal use, it is the
most dangerous when public users access
from Internet due to lack of security
controls

3.2 Asset Analysis

In this paper, we propose an environment critical asset assessment method to perform the asset identification and
asset criticality analysis. The asset assessment process is briefly explained based on the international standard
ISO 17799, improved by BS7799 [26]. The method to identify asset used in this paper is similar to [27]. The
proposed method to assess information system assets includes analyzing information security requirements,
understanding criticality of asset, and checking sensitivity for data asset.

Asset Identification. The British BS7799 [26] suggests the asset classification as follows:
 Information Asset: DB, data file, system document, user manual, study and training materials, regulations for

management, plan document, provision for alternative system
 Documents: contracts, guidelines, company documents, important business documents
 Software Asset: applications S/W, system S/W, development tool and utility
 Physical Asset: computer and communication equipment, magnetic tape, magnetic disk, power supply, air

conditioner, furniture, facilities
 Personnel Asset: individuals, customer, subscriber
 Image and Reputation of a Company
 Service: computer and communication service, warm, light, air conditioning

This paper doesn't deal with all the listed assets in an organization but assets related only to major information
system. Thus, we consider only the following asset domains:
 Software: including applications to support the objectives and business processes in an organization
 Information: including data to achieve the objectives and business process

Journal of Computers Vol. 23, No. 1, April 2012

60

Asset Security Analysis. We treat the criticality of assets according to their property and the environment
where they host. If the application deals with personal identity such as name, password, and finance related
information such as credit card and bank account information, and the application is designed for external use,
the criticality level is treated as high. Otherwise, the criticality level is treated as medium if the application deals
with personal information for internal use, and low if it does not deal with personal information. The
relationship of asset criticality with the processed data and its applied environment is shown in Table 3.

Table 3. Asset Criticality Evaluation

Asset type
Personal or

sensitive
Environment

Criticality
level

Risk rating
scale

No Internal use Very low 0.0-1.99
No External use Low 2.0-3.99
Yes Internal use Medium 4.0-5.99
Yes External facing known users High 6.0-7.99

Data
Application

Yes External facing public users Very high 8.0-10.0

3.3 Threat Identification

The methods of threat elicitation mentioned in Section 2 are general purpose for all kinds of applications. How-
ever, web application is some kind of different one due to its application environment and complexity. Accord-
ingly, threats to this kind of software are different to some extent. The number and category of the threats to
different kind of web applications may not be the same when taking account of complexity and environment
where the applications are hosted. Sometimes, the applications may be developed with security in mind, and
may be difficult to penetrate as well, but if the environment where the application is hosted is not properly se-
cured, it is easy to penetrate the environment , and as a result, it is easy to compromise the whole application
including its subsystems and platform.

As far as the web application developers are concerned, on one hand, they need to keep security on mind
when developing the web application, on the other hand, they are usually forced to face the dilemma that how to
trade-off among so many product factors such as security requirements, product deadline and budgets etc. Thus,
this paper proposes a novel approach to ease the elicitation of the threats for web applications by defining web
application classification as the filter to rule some threats out immediately according to the security requirement
and the given scenery. Before diving into the details of the proposed model, it is better to give an overall idea of
this model, described in Fig.4.

Fig. 4. Illustration of the Environment-Driven Threat Elicitation (EDTE)

The EDTE model is working as a sieve to sift the inappropriate threats. With this approach, we start with a
laundry list of common threats [13] grouped by network, host, and application categories. Next, apply the threat
list to the given application architecture and screen out the threats matching its own web application category.
Then, further filtering can be done to the result threat set according to the security requirements of the given web
application. We will be able to rule some threats out because they do not apply to the scenario of the given ap-
plication. As a result, a set of filtered threats specific to the given web application can be obtained.

Threat Classification. This section we use web application classification to filter the threats proposed in [13]
according to the given security requirements. In order to illustrate the detailed the steps of our approach, threats
list used as the threats set to be filtered is described below.

For comprehensiveness, we choose the threat set proposed by [13] which enumerates the top threats that af-
fect web applications at the network, host, and application levels. For the sake of being used conveniently in our
approach, two related factors, web application category and CIA requirement are added in Table 4, Table 5 and
Table 6.

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

61

Table 4. Network level threat [13]

No. Threat Name and Description
WA

Category
CIA
Risk

1

Information Gathering
Information (Network device type, operating system and
application versions) may be detected by port scanning in order
to perform attack

WA3
WA4
WA5
WA6

C

2

Sniffing
Monitoring traffic on the network for data such as plaintext
passwords or configuration information

WA3
WA4
WA5
WA6

C

4

Spoofing
Spoofing may be used to hide the original source of an attack or
to work around network access control lists (ACLs) that are in
place to limit host access based on source address rules

WA3
WA4
WA5
WA6

C
I
A

5

Session Hijacking
Session hijacking deceives a server or a client into accepting
the upstream host as the actual legitimate host. Instead the
upstream host is an attacker’s host that is manipulating the
network so the attacker’s host appears to be the desired
destination

WA3
WA4
WA5
WA6

C
I
A

6

Denial of Service
Denial of service denies legitimate users access to a server or
services. The SYN flood attack is a common example of a
network level denial of service attack

WA3
WA4
WA5
WA6

A

Table 5. Host level threat [13]

No. Threat Name and Description
WA Cate-

gory
CIA
Risk

7

Viruses, Trojan horses, and Worms
Although these three threats are actually attacks, together they
pose a significant threat to web applications, the hosts these
applications live on, and the network used to deliver these
applications

ALL
C
I
A

8

Footprinting
Examples of Footprinting are port scans, ping sweeps, and
NetBIOS enumeration that can be used by attackers to glean
valuable system-level information to help prepare for more
significant attacks

WA4
WA6

C

9

Password Cracking
The attacker cracks the password if the default account names are
used. The use of blank or weak passwords makes the attacker’s
job even easier

ALL
C
I

10

Denial of Service
An attacker can disrupt service by brute force against your
application, or an attacker may know of a vulnerability that exists
in the service your application is hosted in or in the operating
system that runs your server

ALL A

11

Arbitrary Code Execution
If an attacker can execute malicious code on your server, the
attacker can either compromise server resources or mount further
attacks against downstream systems

WA3 WA4
WA5
WA6

C
I
A

12
Unauthorized Access
Inadequate access controls could allow an unauthorized user to
access restricted information or perform restricted operations

ALL
C
I
A

Table 6. Application level threat by application vulnerability category [13]

Input Validation

Journal of Computers Vol. 23, No. 1, April 2012

62

13
Buffer Overflow
Buffer Overflow exploits are attacks that alter the flow of an
application by overwriting parts of memory

WA3 WA4
WA5 WA6

C
I
A

14
Cross-Site Scripting (XSS)
An XSS attack can cause arbitrary code to run in a user’s browser
while the browser is connected to a trusted Web site

WA4
WA6

C
I
A

15
SQL Injection
A SQL injection attack exploits vulnerabilities in input validation to
run arbitrary commands in the database

WA3 WA4
WA5 WA6

C
I
A

16

Canonicalization
Canonicalization attacks can occur anytime validation is performed
on a different form of the input than that which is used for later proc-
essing.

WA4
WA6

C
I
A

Authentication

17

Network Eavesdropping
An attacker armed with rudimentary network monitoring software on
a host on the same network can capture traffic and obtain user names
and passwords

WA3 WA4
WA5 WA6

C

18
Brute Force Attacks
Brute force attacks rely on computational power to crack hashed
passwords or other secrets secured with hashing and encryption

WA4
WA6

C
I
A

19

Dictionary Attacks
An attacker uses a program to iterate through all of the words in a
dictionary (or multiple dictionaries in different languages) and
computes the hash for each word

WA4
WA6

C
I
A

20

Cookie Replay
An attacker captures the user’s authentication cookie using
monitoring software and replays it to the application to gain access
under a false identity

WA3 WA4
WA5 WA6

C
I
A

21

Credential Theft
Credential theft occurs when an attacker obtains and uses valid
account credentials (username and password) for unauthorized access
to a computer

ALL
C
I
A

Authorization

22

Elevation of Privilege
An attacker may try to elevate privileges to a powerful account such
as a member of the local administrators group or the local system
account

ALL
C
I
A

23
Disclosure of Confidential Data
The disclosure of confidential data can occur if sensitive data can be
viewed by unauthorized users

ALL C

24
Data Tampering
Data tampering refers to the unauthorized modification of data

ALL
I
A

25
Luring Attacks
A luring attack occurs when an entity with few privileges is able to
have an entity with more privileges perform an action on its behalf

WA3 WA4
WA5 WA6

C
I
A

Configuration Management

26

Unauthorized Access to Administration Interfaces
Malicious users able to access a configuration management function
can potentially deface the Web site, access downstream systems and
database

WA4
WA6

C
I
A

27

Unauthorized Access to Configuration Stores
Because of the sensitive nature of the data maintained in
configuration stores, you should ensure that the stores are adequately
secured

WA4
WA6

C
I
A

28

Retrieval of Clear Text Configuration Data
Sensitive data such as passwords and connection strings should be
encrypt in that it helps prevent external attackers from obtaining
sensitive configuration data

WA3 WA4
WA5 WA6

C

29 Lack of Individual Accountability WA3 WA4 C

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

63

Lack of auditing and logging of changes made to configuration
information threatens the ability to identify when changes were made
and who made those change

WA5 WA6 I
A

30

Over-Privileged Process and Service Accounts
If application and service accounts are granted access to change
configuration information on the system, they may be manipulated to
do so by an attacker

WA4
WA6

C
I
A

Sensitive Data

31
Access sensitive data in storage
Sensitive data must be secured in storage to prevent malicious users
from gaining access to and reading the data

ALL
C
I

32
Network Eavesdropping
An attacker uses network monitoring software to capture and
potentially modify sensitive data

WA4
WA6

C

33
Data Tampering
Data tampering refers to the unauthorized modification of data, often
as it is passed over the network

ALL I

Session Management

34

Session Hijacking
A session hijacking attack occurs when an attacker uses network
monitoring software to capture the authentication token (often a
cookie) used to represent a user’s session with an application

WA4
WA6

C

35
Session Replay
Session replay occurs when a user’s session token is intercepted and
submitted by an attacker to bypass the authentication mechanism

WA4
WA6

C
I
A

36
Man in the Middle
A man in the middle attack occurs when the attacker intercepts
messages sent between you and your intended recipient

ALL C

Cryptography

37

Poor Key Generation or Key Management
Attackers can decrypt encrypted data if they have access to the
encryption key or can derive the encryption key

WA3
WA4
WA5
WA6

C

38

Weak or Custom Encryption
Weak encryption algorithm provide no security if the encryption is
cracked or is vulnerable to brute force cracking. Custom algorithms
are particularly vulnerable if they have not been tested

WA3
WA4
WA5
WA6

C

39

Checksum Spoofing
Some Hash algorithm can be interpreted and changed

WA3
WA4
WA5
WA6

C
I

Parameter Manipulation

40

Query String Manipulation
The application is vulnerable to attack if the query string values
represent sensitive data such as monetary amounts

WA3
WA4
WA5
WA6

C
A

41
Form Field Manipulation
Form fields of any type can be easily modified and client-side
validation routines bypassed

WA4
WA6

C
A

42
Cookie Manipulation
Cookie manipulation is the attack that refers to the modification of a
cookie, usually to gain unauthorized access to a Web site

WA4
WA6

C
I

43

HTTP Header Manipulation
An attacker may have to write his own program to perform the HTTP
request, or he may use one of several freely available proxies that
allow easy modification of any data sent from the browser

WA3
WA4
WA5
WA6

I
A

Exception Management

44
Attacker Reveals Implementation Details
Internal implementation details such as exception details should not
being reviewed by an attack which can greatly help them exploit

WA3
WA4
WA5

C

Journal of Computers Vol. 23, No. 1, April 2012

64

potential vulnerabilities and plan further attack WA6

45

Denial of Service
Attackers will probe a web application, usually by passing
deliberately malformed input

WA3
WA4
WA5
WA6

A

Auditing and Logging

46
User Denies Performing an Operation
The issue of repudiation is concerned with a user denying that he or
she performed an action or initiated a transaction

ALL
C
I

47
Attacker Exploits an Application Without Trace
System and application-level auditing is required to ensure that
suspicious activity does not go undetected

ALL
C
I

48
Attacker Covers His or Her Tracks
Your log files must be well-protected to ensure that attackers are not
able to cover their tracks

ALL
C
I

Algorithm. In this section, the process of filtering threats from common threat list according to its web
application type and security requirements is described in the following algorithm. Starting from the web
application classification, each threat in common threat list is sieved by the rule, as a result, a threat list applying
for the given web application can be obtained.

Just like described in [13], “a threat is any potential occurrence, malicious or otherwise, that could harm an
asset. In other words, a threat is any bad thing that can happen to your assets”. It is meaningless to discuss
threats without connection to their assets. Hence, it is necessary to associate the threats to their comprised assets
so that web application developer can design proper security mechanism to protect the assets.

Algorithm 1

Step 1: Classification
Classify the given web application into one of the proposed web ap-

plication type according to three attributes, use WAi to represent
Step 2: Rating the security requirements CIA of WAi

Web application is rated “Low”, “Medium”, or “High” on the metrics
of Integrity, Availability, and Confidentiality, use {CIA requirements} to
represent

Step 3: Filtering
for all threats Ti in common threat list CTL do

 if Ti. WA Category == All then
 Ti→{TL} /*Insert Ti to Threat List TL*/
 end if

 if WAi. WA Category∈ Ti. WA type then
 Ti→{TL} /*Insert Ti to TL*/

end if
 end for
Step 4: Further Filtering

for all TLi in TL do
if TLi. CIA risk does not match the {CIA requirements} then

 TLi←{TL} /*Remove TLi from TL*/
 end if
 end for

Notes: WAi：the ith type of web application classification CTL: Common threat list

Ti：the ith threat type TL: threat list of the WAi

C:Confidentiality I: Integrity A: Availability

Threat Risk Analysis. A threat list can be obtained by using our EDTE method. Threats should be quantified in
order to perform a comprehensive risk assessment for the target system. In this case, we use DREAD [36] to rate
the security risk for each threat. DREAD is part of a system for classifying computer security threats used at
Microsoft. DREAD is a classification scheme for quantifying, comparing and prioritizing the amount of risk
presented by each evaluated threat. The DREAD acronym is formed from the first letter of each category below.
DREAD stands for:
 Damage Potential: defines the amount of potential damage that an attack may cause if successfully executed.

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

65

 Reproducibility: defines the ease in which the attack can be executed and repeated.
 Exploitability: defines the skill level and resources required to successfully execute an attack.
 Affected Users: defines the number of valid user entities affected if the attack is successfully executed.
 Discoverability: defines how quickly and easily an occurrence of an attack can be identified.
 The calculation always produces a number between 0 and 10, the higher the number, the more serious the risk.

Here is use case [36] of how to quantify the DREAD categories in this paper.

Table 7. DREAD Use Cases

Category Use cases Value
Leaking trival information 0
Individual user data is compromised or af-
fected

5
Damage potential

Complete system or data destruction 10
Very difficult to reproduce 0
One or two steps required 5

Reproducibility

Just a web browser, without authentication 10
Very skilled 0
Malware or attack tool available 5

Exploitability

Novice programmer 10
None 0
Some users 5

Affected users

All users 10
Unlikely 0
Accessible only to few users 5

Discoverability

Published 10

3.4 Vulnerability Analysis

Once the credible threats are identified, a vulnerability analysis must be performed. The vulnerability analysis
considers how to identify vulnerabilities and their potential impact of loss from a successful attack as well as the
vulnerability of the facility/location to an attack.

Existing vulnerability identification tools for application can be used to perform vulnerability analysis. Vul-
nerability analysis is performed for the application assets, but not for data asset. Furthermore, vulnerabilities of
applications used in server should be analyzed as well as the database program.

There are a number of vulnerability “scoring” systems such as Common Vulnerability Scoring System
(CVSS). We can perform CVSS to rate each vulnerability identified from one of the diagnosis tools, and pro-
duce a total score for the vulnerability of system.

4 Case Study

In order to illustrate the usefulness of web application classification this paper will examine a case study used in
[4]. Widgets Incorporated is a medium-sized consumer goods company. They have determined the need to cre-
ate I-Tracker: a custom-built inventory tracking application to facilitate growing customer demand. The most
common use case will be for sales staff to enter data from a sales order which will automatically update the
inventory levels and alert the logistics staff to prepare the order for shipment. When the inventory level for a
particular widget drops below a certain threshold the manufacturing division will be notified. The main types of
data used in the application include inventory levels, customer IDs, sales orders numbers, descriptions of orders,
and product IDs.

I-Tracker will be used by 30 internal users spread across the manufacturing, sales, and logistics departments,
and that number is anticipated to grow to as much as 100 in the next few years. The business has indicated that
the application may need to interface with a partner Widget Accessory supplier in the future. Widgets Incorpo-
rated currently receive 50-60 orders per day and anticipates that number grow to around 150. Data flow diagram
of I-Tracker is shown in Fig. 5.

Journal of Computers Vol. 23, No. 1, April 2012

66

Fig. 5. Data flow diagram of the I-Tracker

Phase1. Architecture and Environment Analysis
From the case description, the example web application is used within internal environment facing a number

of known users. Thus, it belongs to the first type of web application categories.
Phase2. Asset analysis
 Based on the description of section 3, assets can be identified as data store, data flow and processes. Process is
the dynamic execution of application, while data flow is the dynamic representation of a “flow” of data in the
system.

Table 8. Asset criticality analysis

ID Asset Name Type
Personal or

sensitive
Environment Criticality

Rating
value

1 Customer data Data Yes Internal use Medium 5
2 Sales order Data Yes Internal use Medium 5
3 Inventry data Data No Internal use Very Low 1
4 Product data Data No Internal use Very Low 1

5
Order
processing

Application Yes Internal use Medium 5

6 Order update Application Yes Internal use Medium 5

7
Alert logistics
staff

Application No Internal use Very Low 1

8
Inventry level
notify

Application No Internal use Very Low 1

9 Prepare data Application No Internal use Very Low 1

Table 9. Threat list after filtering

ID Threat Name CIA
7 Viruses, Trojan horses, and Worms CIA
9 Password Cracking CI

10 Denial of Service A
12 Unauthorized Access CIA
21 Credential Theft CIA
22 Elevation of Privilege CIA
23 Disclosure of Confidential Data C
24 Data Tampering CI
31 Access sensitive data in storage C
36 Man in the Middle C
46 User Denies Performing an Operation CI
47 Attacker Exploits an Application Without Trace CI
48 Attacker Covers His or Her Tracks CI

Phase3. Threat analysis
Step1: Threat identification

1. Security requirement rating. It is necessary to rate the security requirements CIA of target application
when using our EDTE method. Using internal guidelines based on documents such as [21], the following applica-
tion classification may be produced:
 Confidentiality: Low

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

67

All data in the application is readily available to anyone in the company. Sensitive financial data and client private
information are not handled by this application.
 Integrity: High
Poor inventory and shipping tracking may result in significant financial loss to the company and may result in
customer dissatisfaction / loss of customers.
 Availability: Medium
A major disruption of the application will cause a backlog in shipping and have some financial consequences to
the organization. Minor disruptions, however, can be tolerated as customers expect a 4-6 week delay in receiving
their goods.

2. Filtering. According to the algorithm 1 described in Section 3.3, the most likely threats are filtered and listed
in Table 9.
We can infer from the table above that internal attackers are the major factors to perform the attack.

3. Further Filtering. The threat list can be further screened out according to the security requirements of CIA
aspects. In terms of the algorithm described in Section 3, threats with only Confidentiality (C) requirements can be
rule out in that the given application has low requirements on Confidentiality, while threats with Integrity (I) and
Availability (A) are remained.
Step2: Threat risk quantification. DREAD is used to quantify the security level for each threat identified from
our EDTE model according to the rating value in Table 7.

Table 10. Threat risk quantification

ID Threat Name D R E A D Total
7 Viruses, Trojan horses, and Worms 10 10 10 10 10 10
9 Password Cracking 10 5 5 5 5 7

10 Denial of Service 10 5 5 10 0 6
12 Unauthorized Access 10 5 5 5 0 5
21 Credential Theft 10 0 5 5 5 5
22 Elevation of Privilege 10 10 0 5 0 5
24 Data Tampering 10 5 5 5 5 6
46 User Denies Performing an Operation 5 5 5 5 5 5
47 Attacker Exploits an Application Without Trace 5 5 5 0 0 3
48 Attacker Covers His or Her Tracks 5 5 5 0 0 3

Phase4: Vulnerability analysis

In this paper we do not give a detailed vulnerability identification method. However, some common vulner-
abilities in design phase can be included due to their prevalence. Suppose we use one of the host vulnerability
tools to identify the vulnerabilities and an overall evaluation number between 1 and 10 can be obtained by using
CVSS.
Phase5: Potential risk

From previous steps, the average score for asset and threat is 2.78 and 5 respectively. We just suppose the
vulnerability score of target application is 3.

According to formula (2), security vector of the target application

SV= 3
VTA 222 ）（ = 3

3578.2 222 ）（ ≈ 3.74. From Table 11, we can conclude that the security

risk of target web application is low.

Table 11. Risk Rating Scale

Value Treat severity Rank
0.0-1.99 Very low 1
2.0-3.99 Low 2
4.0-5.99 Medium 3
6.0-7.99 High 4
8.0-10.0 Very high 5

Journal of Computers Vol. 23, No. 1, April 2012

68

5 Conclusions

Risk analysis is, at best, a good general-purpose yardstick by which we can judge our security design’s effec-
tiveness. Because roughly 50 percent of security problems are the result of design flaws, performing a risk
analysis at the design level is an important part of a solid software security program. Taking the trouble to apply
risk analysis methods at the design level for any application often yields valuable, business-relevant results [28].

This paper proposes a novel approach to perform risk assessment at design stage for web application which is
based on multiple security vectors of asset, threat and vulnerability. The proposed web application classification
can ease the elicitation of threats for the given application with the aid of web application classification which is
defined taking consideration of the complexity and environments where the web applications are hosted. With
the proposed method and result obtained under this work, it is possible to determine the appropriate design to
help identify the most critical threats in the web application.

One defect of our proposed model is that it is incapable of identify the emerging threats out of the common
threat list. Fortunately, the common threat list can be extended along with the emergency of the new threats.
Another defect is that the filtered threats by the proposed model are not as specific as elicited by other methods.
At last, we do not give the implementation of vulnerability identification. However, our proposed method can
shorten the asset and threat elicitation time significantly and an experienced developer can easily relate the fil-
tered threats to its appropriate scenery. Future research will focus on define or improve vulnerability identifica-
tion approach in design phase and then improve the proposed approach to an automatic implementation tool for
web application.

6 Acknowledgment

This work was sponsored by Liaoning Province Office of Education of China Project Research on Security-
oriented Software Reengineering (Grant No. L2010439) and partial financial support by the National Natural
Science Foundation of China (Grant No. 60873064 and Grant No. 90818026).

References

[1] B. D. R. Marino, H. M. Haddad, J. E. Molero A, “A Methodological Tool for Asset Identification in Web Applica-

tions,” in Proceeding of the 4th International Conference on Software Engineering Advances, Porto, Portugal, pp.

413-418, 2009.

[2] Web Application Security Trends Report, http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q3-Q4-2008.pdf

[3] The Importance of Application Classification in Secure Application Development,

http://www.webappsec.org/projects/articles/041607.shtml

[4] J. R. Maguire and H. G. Miller, “Web-application Security: From Reactive to Proactive,” IT Professional, Vol. 12, No.

4, pp. 7-9, 2010.

[5] G. Sindre and A. L. Opdahl, “Eliciting Security Requirements with Misuse Cases,” Requirements Engineering, Vol.

10, No. 1, pp. 34-44, 2005.

[6] I. F. Alexander, “Misuse Cases: Use Cases with Hostile Intent,” IEEE Software, Vol. 20, No. 1, pp. 58-66, 2003.

[7] D. G. Firesmith, “Analyzing the Security Significance of System Requirements,” in Proceedings of Symposium on

Requirements Engineering for Information Security, Paris, France, 2005.

[8] F. A. Braz, E. B. Fernandez, M. VanHilst, “Eliciting Security Requirements through Misuse Activities,” in Proceed-

ing of the 19th International Workshop on Database and Expert Systems Applications, Turin, Italy, pp. 328-333, 2008.

[9] F. Swiderski and W. Snyder, Threat modeling, Microsoft Press, Redmond, Washington, 2004.

[10] I. A. Tondel, M. G. Jaatun, P. H. Meland, “Security Requirements for the Rest of Us: A Survey,” IEEE Software,

Vol.25, No. 1, pp. 20-27, 2008.

Guan et al: Estimating Security Risk for Web Applications using Security Vectors

69

[11] S. Myagmar, A.J. Lee, W. Yurcik, “Threat Modeling as a Basis for Security Requirements,” in Proceeding of Sympo-

sium on Requirements Engineering for Information Security, Paris, France, 2005.

[12] M. A. Hadavi, H. Shirazi, H. M. Sangchi, V. S. Hamishagi, “Software Security: A Vulnerability-activity Revisit,” in

Proceeding of the 3rd International Conference on Availability, Reliability and Security, Barcelona, Spain, pp. 866-

872, 2008.

[13] J.D. Meier, A. Mackman, S. Vasireddy, M. Dunner, R. Escamilla, A. Murukan, Improving Web Application Security:

Threats and Countermeasures, Microsoft Press, Redmond, Washington, 2003.

[14] C. Möckel and A. E. Abdallah, “Threat Modeling Approaches and Tools for Securing Architectural Designs of an E-

banking Application,” in Proceeding of the 6th International Conference on Information Assurance and Security, At-

lanta, GA, USA, pp. 149-154, 2010.

[15] An Approach to Web Application Threat Modeling,

http://www.infosecwriters.com/text_resources/pdf/AShrivastava_Web_Application_Threat_Modeling.pdf

[16] E. A. Oladimeji, S. Supakkul, L. Chung, “Security Threat Modeling and Analysis: A Goal-oriented Approach,” in

Proceedings of the 10th International Conference on Software Engineering and Applications, Dallas, Texas, USA,

2006.

[17] M. Jackson, “Problem Frames and Software Engineering,” Expert Systems, Vol. 25, No. 1, pp. 7-8, 2008.

[18] C. B. Haley, R. C. Laney, J. D. Moffett, B. Nuseibeh, “Security Requirements Engineering: A Framework for Repre-

sentation and Analysis,” IEEE Transaction On Software Engineering, Vol. 34, No. 1, pp. 133–153, 2008.

[19] D. Hatebur, M. Heisel, H. Schmidt, “Analysis and Component-based Realization of Security Requirements,” in Pro-

ceedings of the 3rd International Conference on Availability, Reliability and Security, Barcelona, Spain, pp. 195-203,

2008.

[20] J. P. Jesan, “Threat Modeling Web-applications Using STRIDE Average Model,” in Proceedings of Computer Secu-

rity Conference, Myrtle Beach, USA, 2008.

[21] Protecting Sensitive Compartmented Information within Information Systems,

http://www.fas.org/irp/offdocs/DCID_6-3_20Manual.htm

[22] L. Liu, E. S. K. Yu, J. Mylopoulos, “Secure-i*: Engineering Secure Software Systems through Social Analysis,”

International Journal of Software and Informatics, Vol. 3, No. 1, pp. 89-120, 2009.

[23] L. Liu, E. Yu, J. Mylopoulos, “Secure Design Based on Social Modeling,” in Proceedings of the 30th Annual Interna-

tional Computer Software and Applications Conference, Chicago, IL, USA, pp. 71-78, 2006.

[24] T. Long, L. Liu, Y.J. Yu, Z. Jin, “AVT Vector: A Quantitative Security Requirements Evaluation Approach based on

Assets, Vulnerabilities and Trustworthiness of Environment,” in Proceedings of the 17th IEEE International Require-

ments Engineering Conference, Atlanta, Georgia, USA, pp. 377-378, 2009.

[25] H. Guan, W.R. Chen, L. Liu, H.J. Yang, “Environment-driven Threats Elicitation for Web Application”, in Proceed-

ing of Agent and Multi-Agent Systems: Technologies and Applications, Manchester, UK, Vol. 6682 , pp. 291-300,

2011.

[26] BSI, Code of Practice for Information Security Management, British Standards Institute, London, 1999.

[27] Y.J. Chung, I.J. Kim, N.H. Lee, T. Lee, H. P. In, “Security Risk Vector for Quantitative Asset Assessment,” in Pro-

ceeding of International Conference on Computational Science and Its Applications, Singapore, Vol. 3481, pp. 274-

283, 2005.

Journal of Computers Vol. 23, No. 1, April 2012

70

[28] D. Verdon and G. McGraw, “Risk Analysis in Software Design,” IEEE Security and Privacy, Vol. 2, No. 4, pp.79-84,

2004.

[29] I. Mkpong-Ruffin, D. A. Umphress, J. Hamilton, J.Gilbert, “Quantitative Software Security Risk Assessment Model,”

in Proceeding of the 3rd ACM Workshop on Quality of Protection, Alexandria, VA, USA, pp.31-33, 2007.

[30] Risk Management Guide for Information Technology Systems, http://csrc.nist.gov/publications/nistpubs/800-

30/sp800-30.pdf

[31] Methodology for Information Systems Risk Analysis and Management, https://www.ccn-

cert.cni.es/publico/herramientas/pilar43/en/magerit/meth-en-v11.pdf

[32] A Complete Guide to the Common Vulnerability Scoring System Version 2.0, http://www.first.org/cvss/cvss-

guide.html#i2.2.1

[33] OCTAVE, http://www.cert.org/octave/

[34] D. D. Cock, K. Wouters, D. Schellekens, D. Singelee, B. Preneel, “Threat Modelling for Security Tokens in Web

Applications,” in Proceeding of the 8th Conference on Communication and Multimedia Security, Windermere, UK, pp.

213-223, 2004.

[35] L. Jiang, H. Chen, F. Deng, “A Security Evaluation Method Based on STRIDE Model for Web Service,” in Proceed-

ing of the 2nd International Workshop on Intelligent Systems and Applications, Wuhan, China, pp. 1-5, 2010.

[36] Threat Risk Modeling, https://www.owasp.org/index.php/Threat_Risk_Modeling

